Abstract

Spatial optical soliton propagation in any material is limited by the losses of the optical beam, which results in beam broadening. In nematic liquid crystals it is possible to tune the magnitude of the nonlinearity by means of a bias voltage. In this work we present the idea of increasing the nonlinearity along the propagation distance by changing the bias voltage. Next to a theoretical analysis, we present experimental proof of the validity of our method. The use of this technique offers a major advantage for optical interconnects because the beam broadening can be reduced over much longer propagation distances.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
    [CrossRef]
  2. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, Opt. Express 12, 1011 (2004).
    [CrossRef] [PubMed]
  3. M. Peccianti, C. Conti, and G. Assanto, Opt. Lett. 30, 415 (2005).
    [CrossRef] [PubMed]
  4. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
    [CrossRef]
  5. J. Henninot, J. Blach, and M. Warenghem, J. Opt. A, Pure Appl. Opt. 9, 20 (2007).
    [CrossRef]
  6. J. Beeckman, K. Neyts, and M. Haelterman, J. Opt. A, Pure Appl. Opt. 8, 214 (2006).
    [CrossRef]
  7. S. Wu and K. Lim, Appl. Opt. 26, 1722 (1987).
    [CrossRef] [PubMed]
  8. X. Hutsebaut, C. Cambournac, M. Haelterman, J. Beeckman, and K. Neyts, J. Opt. Soc. Am. B 22, 1424 (2005).
    [CrossRef]
  9. L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
    [CrossRef]
  10. A. Strinić, D. Timotijević, D. Arsenović, M. Petrović, and M. Belić, Opt. Express 13, 493 (2005).
    [CrossRef] [PubMed]
  11. F. Ye, Y. V. Kartashov, and L. Torner, Phys. Rev. A 76, 033812 (2007).
    [CrossRef]
  12. A. Snyder and D. Mitchell, Science 276, 1538 (1997).
    [CrossRef]
  13. C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
    [CrossRef] [PubMed]
  14. J. Beeckman, X. Hutsebaut, M. Haelterman, and K. Neyts, Opt. Express 15, 11185 (2007).
    [CrossRef] [PubMed]

2008 (1)

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

2007 (3)

F. Ye, Y. V. Kartashov, and L. Torner, Phys. Rev. A 76, 033812 (2007).
[CrossRef]

J. Henninot, J. Blach, and M. Warenghem, J. Opt. A, Pure Appl. Opt. 9, 20 (2007).
[CrossRef]

J. Beeckman, X. Hutsebaut, M. Haelterman, and K. Neyts, Opt. Express 15, 11185 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Beeckman, K. Neyts, and M. Haelterman, J. Opt. A, Pure Appl. Opt. 8, 214 (2006).
[CrossRef]

2005 (3)

2004 (2)

2002 (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

2000 (1)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

1997 (1)

A. Snyder and D. Mitchell, Science 276, 1538 (1997).
[CrossRef]

1987 (1)

Arsenovic, D.

Assanto, G.

M. Peccianti, C. Conti, and G. Assanto, Opt. Lett. 30, 415 (2005).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Beeckman, J.

Belic, M.

Blach, J.

J. Henninot, J. Blach, and M. Warenghem, J. Opt. A, Pure Appl. Opt. 9, 20 (2007).
[CrossRef]

Cambournac, C.

Cao, L.

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

Conti, C.

M. Peccianti, C. Conti, and G. Assanto, Opt. Lett. 30, 415 (2005).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Guo, Q.

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

Haelterman, M.

Henninot, J.

J. Henninot, J. Blach, and M. Warenghem, J. Opt. A, Pure Appl. Opt. 9, 20 (2007).
[CrossRef]

Hu, W.

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

Hutsebaut, X.

Kartashov, Y. V.

F. Ye, Y. V. Kartashov, and L. Torner, Phys. Rev. A 76, 033812 (2007).
[CrossRef]

Khoo, I.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Lim, K.

Lu, D.

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

Mitchell, D.

A. Snyder and D. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Neyts, K.

Peccianti, M.

M. Peccianti, C. Conti, and G. Assanto, Opt. Lett. 30, 415 (2005).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Petrovic, M.

Snyder, A.

A. Snyder and D. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Strinic, A.

Timotijevic, D.

Torner, L.

F. Ye, Y. V. Kartashov, and L. Torner, Phys. Rev. A 76, 033812 (2007).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Warenghem, M.

J. Henninot, J. Blach, and M. Warenghem, J. Opt. A, Pure Appl. Opt. 9, 20 (2007).
[CrossRef]

Wu, S.

Ye, F.

F. Ye, Y. V. Kartashov, and L. Torner, Phys. Rev. A 76, 033812 (2007).
[CrossRef]

Zhu, Y.

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

J. Henninot, J. Blach, and M. Warenghem, J. Opt. A, Pure Appl. Opt. 9, 20 (2007).
[CrossRef]

J. Beeckman, K. Neyts, and M. Haelterman, J. Opt. A, Pure Appl. Opt. 8, 214 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Cao, Y. Zhu, D. Lu, W. Hu, and Q. Guo, Opt. Commun. 281, 5004 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

F. Ye, Y. V. Kartashov, and L. Torner, Phys. Rev. A 76, 033812 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

Science (1)

A. Snyder and D. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Exponential reduction in the optical power along the propagations distance (dashed curve) and the required midtilt of the director (starting from either 0 or 0.8 V). (b) Required bias voltage. The dashed curve shows the voltage for which the midtilt is 45°.

Fig. 2
Fig. 2

Schematic of the configuration. A beam is launched into the LC cell with a microscope objective. The voltage over the thickness of the cell is adapted along the propagation distance in steps by means of a resistor series ( R = 150 Ω ) .

Fig. 3
Fig. 3

Evolution of the beam width and the peak intensity along the propagation distance for different optical powers of the beam injected into the cell. The diffracting curve is the evolution of the beam width for a very low optical power ( 2 μ W ) .

Fig. 4
Fig. 4

Evolution of the beam width and the peak intensity when the voltage is adapted along the propagation distance. The vertical lines denote the border between two successive electrodes.

Metrics