Abstract

We report a fabrication technique for chirped fiber Bragg gratings (CFBGs) using a flexible setup based on a poly(methyl-methacrylate) phase mask. The period of the phase mask can be thermally tuned during the inscription process, allowing the grating period of uniform fiber Bragg gratings to be shifted about 7nm by a temperature change of 74K. In addition, CFBGs with bandwidths up to 2nm are demonstrated in nonphotosensitive fibers by IR femtosecond inscription.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  2. E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, Opt. Lett. 31, 2390 (2006).
    [CrossRef] [PubMed]
  3. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, Opt. Lett. 32, 1486 (2007).
    [CrossRef] [PubMed]
  4. J. Poulin and R. Kashyap, Opt. Express 13, 4414 (2005).
    [CrossRef] [PubMed]
  5. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
    [CrossRef]
  6. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, Opt. Lett. 28, 995(2003).
    [CrossRef] [PubMed]
  7. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, Appl. Phys. A 86, 153 (2007).
    [CrossRef]
  8. R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
    [CrossRef]
  9. M. Sumetsky, Y. Dulashko, J. W. Fleming, A. Kortan, P. I. Reyes, and P. S. Westbrook, Opt. Lett. 29, 1315 (2004).
    [CrossRef] [PubMed]
  10. J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, Opt. Lett. 33, 1560 (2008).
    [CrossRef] [PubMed]
  11. K. C. Byron and H. N. Rourke, Electron. Lett. 31, 60 (1995).
    [CrossRef]
  12. R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
    [CrossRef]
  13. S. Ledesma, S. N. Goyanes, and C. Duplaá, Rev. Sci. Instrum. 73, 3271 (2002).
    [CrossRef]
  14. H. M. Otte, W. G. Montague, and D. O. Welch, J. Appl. Phys. 34, 3149 (1963).
    [CrossRef]

2008

2007

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, Opt. Lett. 32, 1486 (2007).
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, Appl. Phys. A 86, 153 (2007).
[CrossRef]

2006

2005

2004

2003

2002

S. Ledesma, S. N. Goyanes, and C. Duplaá, Rev. Sci. Instrum. 73, 3271 (2002).
[CrossRef]

1995

K. C. Byron and H. N. Rourke, Electron. Lett. 31, 60 (1995).
[CrossRef]

1994

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
[CrossRef]

1989

R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
[CrossRef]

G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
[CrossRef] [PubMed]

1963

H. M. Otte, W. G. Montague, and D. O. Welch, J. Appl. Phys. 34, 3149 (1963).
[CrossRef]

Agrawal, D. K.

R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
[CrossRef]

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Burghoff, J.

Byron, K. C.

K. C. Byron and H. N. Rourke, Electron. Lett. 31, 60 (1995).
[CrossRef]

Campbell, R. J.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
[CrossRef]

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, Appl. Phys. A 86, 153 (2007).
[CrossRef]

Ding, H.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Dulashko, Y.

Duplaá, C.

S. Ledesma, S. N. Goyanes, and C. Duplaá, Rev. Sci. Instrum. 73, 3271 (2002).
[CrossRef]

Fleming, J. W.

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, Appl. Phys. A 86, 153 (2007).
[CrossRef]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, Opt. Lett. 31, 2390 (2006).
[CrossRef] [PubMed]

Fuerbach, A.

Glenn, W. H.

Goyanes, S. N.

S. Ledesma, S. N. Goyanes, and C. Duplaá, Rev. Sci. Instrum. 73, 3271 (2002).
[CrossRef]

Grobnic, D.

Henderson, G.

Jackson, S. D.

Jovanovic, N.

Kashyap, R.

J. Poulin and R. Kashyap, Opt. Express 13, 4414 (2005).
[CrossRef] [PubMed]

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
[CrossRef]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Kortan, A.

Ledesma, S.

S. Ledesma, S. N. Goyanes, and C. Duplaá, Rev. Sci. Instrum. 73, 3271 (2002).
[CrossRef]

Limpert, J.

Lu, P.

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

McKee, P. F.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
[CrossRef]

McKinstry, H. A.

R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
[CrossRef]

Meltz, G.

Mihailov, S. J.

Montague, W. G.

H. M. Otte, W. G. Montague, and D. O. Welch, J. Appl. Phys. 34, 3149 (1963).
[CrossRef]

Morey, W. W.

Nolte, S.

Ortac, B.

Otte, H. M.

H. M. Otte, W. G. Montague, and D. O. Welch, J. Appl. Phys. 34, 3149 (1963).
[CrossRef]

Poulin, J.

Reyes, P. I.

Rourke, H. N.

K. C. Byron and H. N. Rourke, Electron. Lett. 31, 60 (1995).
[CrossRef]

Roy, R.

R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
[CrossRef]

Schimpf, D.

Smelser, C. W.

Stutzki, F.

Sumetsky, M.

Thomas, J.

Tünnermann, A.

Unruh, J.

Voigtländer, C.

Walker, R. B.

Welch, D. O.

H. M. Otte, W. G. Montague, and D. O. Welch, J. Appl. Phys. 34, 3149 (1963).
[CrossRef]

Westbrook, P. S.

Wikszak, E.

Williams, D. L.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
[CrossRef]

Withford, M. J.

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, Appl. Phys. A 86, 153 (2007).
[CrossRef]

Annu. Rev. Mater. Sci.

R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
[CrossRef]

Appl. Phys. A

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, Appl. Phys. A 86, 153 (2007).
[CrossRef]

Electron. Lett.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, Electron. Lett. 30, 2159 (1994).
[CrossRef]

K. C. Byron and H. N. Rourke, Electron. Lett. 31, 60 (1995).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

J. Appl. Phys.

H. M. Otte, W. G. Montague, and D. O. Welch, J. Appl. Phys. 34, 3149 (1963).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

S. Ledesma, S. N. Goyanes, and C. Duplaá, Rev. Sci. Instrum. 73, 3271 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Phase-mask scanning setup with the tunable PMMA phase mask.

Fig. 2
Fig. 2

Transmission spectra of three uniform FBGs inscribed by heating the PMMA mask to different constant temperatures (inscription parameters: E = 240 μ J , L = 35 mm , v = 4 mm min ; solid, T = 18 ° C ; dotted, T = 37 ° C ; dashed, T = 92 ° C ); The inset shows a thermo-camera image of the phase mask with the black marked inscription region.

Fig. 3
Fig. 3

Reflection spectra of three CFBGs inscribed by heating of the PMMA mask to different temperatures: dotted and dashed, E = 220 μ J , L = 20 mm , v=2 mm/min; solid, E = 350 μ J , L=35 mm, and v=3.5 mm/min (both ends of the mask fixed).

Tables (2)

Tables Icon

Table 1 Thermal Expansion Coefficients and Shifts in the Period at Δ T = 70 K for a Pitch of Λ = 2.15 μ m of Fused Silica [12], PMMA [13], and Aluminum [14]

Tables Icon

Table 2 Reflectivity, Measured Δ λ m , and Theoretical Δ λ th Bandwidth of the CFBGs Shown in Fig. 3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ Λ = Λ ( T ) Λ ( T 0 ) = 1 + α     Δ T ,

Metrics