Abstract

We provide experimental evidence of the temporal analog of the spatial Lau phenomenon. This effect can be interpreted as an incoherent superposition of multiple temporal self-images. Using an array of continuous-wave lasers modulated by a single external electro-optic modulator driven by a repetitive pattern, and dispersing the light in a medium satisfying the integer Talbot self-imaging condition, each monochromatic carrier generates a temporally shifted self-image. We show experimentally that, if the wavelength separation satisfies the temporal Lau condition, the self-images appear superimposed in intensity. The requirements for this incoherent regime are analyzed. This work paves the way to achieve multiwavelength pulse trains with the ability to control the time interleaving between pulses, with potential applications for pulse shaping and high-speed sampling.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007).
    [CrossRef]
  2. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
    [CrossRef] [PubMed]
  3. J. van Howe and C. Xu, J. Lightwave Technol. 24, 2649 (2006).
    [CrossRef]
  4. J. Jahns and A. W. Lohmann, Opt. Commun. 28, 263 (1979).
    [CrossRef]
  5. D. Zalvidea, R. Duchowicz, and E. E. Sicre, Appl. Opt. 43, 3005 (2004).
    [CrossRef] [PubMed]
  6. J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
    [CrossRef]
  7. K. Patorski, Prog. Opt. 27, 3 (1989).
  8. J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
    [CrossRef]
  9. J. Azaña and M. A. Muriel, IEEE Photon. Technol. Lett. 13, 1358 (2001).
    [CrossRef]
  10. B. Bortnik, I. Y. Poberezhskiy, J. Chou, B. Jalali, and H. R. Fetterman, J. Lightwave Technol. 24, 2752 (2006).
    [CrossRef]
  11. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
    [CrossRef]

2007 (1)

M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007).
[CrossRef]

2006 (3)

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

J. van Howe and C. Xu, J. Lightwave Technol. 24, 2649 (2006).
[CrossRef]

B. Bortnik, I. Y. Poberezhskiy, J. Chou, B. Jalali, and H. R. Fetterman, J. Lightwave Technol. 24, 2752 (2006).
[CrossRef]

2004 (2)

2001 (2)

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, IEEE Photon. Technol. Lett. 13, 1358 (2001).
[CrossRef]

1989 (1)

K. Patorski, Prog. Opt. 27, 3 (1989).

1979 (1)

J. Jahns and A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[CrossRef]

1965 (1)

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Alphonse, G. A.

M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007).
[CrossRef]

Andrés, P.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

Azaña, J.

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, IEEE Photon. Technol. Lett. 13, 1358 (2001).
[CrossRef]

Bortnik, B.

Chou, J.

Delfyett, P. J.

M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007).
[CrossRef]

Duchowicz, R.

Fernández-Pousa, C. R.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

Fetterman, H. R.

Gómez-Sarabia, C. M.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

Hansryd, J.

Jahns, J.

J. Jahns and A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[CrossRef]

Jalali, B.

Lancis, J.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

Lohmann, A. W.

J. Jahns and A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Mielke, M. M.

M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007).
[CrossRef]

Muriel, M. A.

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, IEEE Photon. Technol. Lett. 13, 1358 (2001).
[CrossRef]

Ojeda-Castañeda, J.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

Patorski, K.

K. Patorski, Prog. Opt. 27, 3 (1989).

Poberezhskiy, I. Y.

Sicre, E. E.

van Howe, J.

Wolf, E.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Xu, C.

Zalvidea, D.

Appl. Opt. (1)

IEEE J. Sel. Areas Commun. (1)

M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Azaña and M. A. Muriel, IEEE Photon. Technol. Lett. 13, 1358 (2001).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (1)

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

J. Jahns and A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[CrossRef]

Opt. Lett. (1)

Prog. Opt. (1)

K. Patorski, Prog. Opt. 27, 3 (1989).

Rev. Mod. Phys. (1)

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the Lau effect in (a) the spatial domain and (b) the temporal domain.

Fig. 2
Fig. 2

Experimental setup. EDFA, erbium-doped fiber amplifier; OC, optical coupler; EOM, electro-optic modulator.

Fig. 3
Fig. 3

Temporal Lau effect at integer self-imaging dispersions. Details are given in the text.

Fig. 4
Fig. 4

Pulse shaping capabilities in the temporal Lau effect at integer self-imaging dispersions.

Fig. 5
Fig. 5

Beat noise in (a) time domain, owing to the proximity of the optical sidebands of the two optical carriers, as shown in (b). For completeness, (c) and (d) show the scope trace and the spectrum corresponding to Figs. 3c, 3d, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ 2 = T 2 / ( 2 π ) .
Δ τ = Φ 2 Δ ω .
Δ τ = m T ,

Metrics