Abstract

The modulation efficiency, at high-frequency microwave modulation, of a LiNbO3 waveguide electro-optic modulator is shown to be degraded severely, especially when it is used as a frequency translator in a Brillouin-distributed fiber-sensing system. We derive an analytical expression for this attenuation regarding the phase-velocity mismatch and the impedance mismatch during the modulation process. Theoretical results are confirmed by experimental results based on a 15Gbs LiNbO3 optical intensity modulator.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Park and C. G. Lee, J. Lightwave Technol. 25, 1711 (2007).
    [CrossRef]
  2. H. V. Pham, H. Murata, and Y. Okamura, Adv. OptoElectron. 10, 1155 (2008).
  3. T. Healy, F. Garcia Gunning, A. Ellis, and J. Bull, Opt. Express 15, 2981 (2007).
    [CrossRef] [PubMed]
  4. L. Yi and Z. Huijuan, Semicond. Optoelectron. 29, 809 (2008).
  5. A. V. Shahraam and A. Graham, Opt. Lett. 28, 1418 (2008).
  6. Mengzhou, Z. Huijiuan, and L. Yi, to be presented at the 2008 Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, November 7-9, 2008.
  7. M. M. Howerton, C. H. Bulmer, and W. K. Burns, J. Lightwave Technol. 8, 1177 (1990).
    [CrossRef]
  8. M. Belmonte, V. Pruneri, and M. Orio, http://www.ecio.conference.org/2003/paper/2003ThP02.pdf.
  9. L. Wooten, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
    [CrossRef]
  10. D. Janner, J. Opt. A 10, 104003 (2008).
    [CrossRef]
  11. William S.-C. Chang, RF Photonic Technology in Optical Fiber Links (Academic, 2002).
    [CrossRef]

2008 (5)

L. Yi and Z. Huijuan, Semicond. Optoelectron. 29, 809 (2008).

A. V. Shahraam and A. Graham, Opt. Lett. 28, 1418 (2008).

Mengzhou, Z. Huijiuan, and L. Yi, to be presented at the 2008 Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, November 7-9, 2008.

H. V. Pham, H. Murata, and Y. Okamura, Adv. OptoElectron. 10, 1155 (2008).

D. Janner, J. Opt. A 10, 104003 (2008).
[CrossRef]

2007 (2)

2002 (1)

William S.-C. Chang, RF Photonic Technology in Optical Fiber Links (Academic, 2002).
[CrossRef]

2000 (1)

L. Wooten, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[CrossRef]

1990 (1)

M. M. Howerton, C. H. Bulmer, and W. K. Burns, J. Lightwave Technol. 8, 1177 (1990).
[CrossRef]

Belmonte, M.

M. Belmonte, V. Pruneri, and M. Orio, http://www.ecio.conference.org/2003/paper/2003ThP02.pdf.

Bull, J.

Bulmer, C. H.

M. M. Howerton, C. H. Bulmer, and W. K. Burns, J. Lightwave Technol. 8, 1177 (1990).
[CrossRef]

Burns, W. K.

M. M. Howerton, C. H. Bulmer, and W. K. Burns, J. Lightwave Technol. 8, 1177 (1990).
[CrossRef]

Chang, William S.-C.

William S.-C. Chang, RF Photonic Technology in Optical Fiber Links (Academic, 2002).
[CrossRef]

Ellis, A.

Garcia Gunning, F.

Graham, A.

Healy, T.

Howerton, M. M.

M. M. Howerton, C. H. Bulmer, and W. K. Burns, J. Lightwave Technol. 8, 1177 (1990).
[CrossRef]

Huijiuan, Z.

Mengzhou, Z. Huijiuan, and L. Yi, to be presented at the 2008 Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, November 7-9, 2008.

Huijuan, Z.

L. Yi and Z. Huijuan, Semicond. Optoelectron. 29, 809 (2008).

Janner, D.

D. Janner, J. Opt. A 10, 104003 (2008).
[CrossRef]

Lee, C. G.

Mengzhou,

Mengzhou, Z. Huijiuan, and L. Yi, to be presented at the 2008 Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, November 7-9, 2008.

Murata, H.

H. V. Pham, H. Murata, and Y. Okamura, Adv. OptoElectron. 10, 1155 (2008).

Okamura, Y.

H. V. Pham, H. Murata, and Y. Okamura, Adv. OptoElectron. 10, 1155 (2008).

Orio, M.

M. Belmonte, V. Pruneri, and M. Orio, http://www.ecio.conference.org/2003/paper/2003ThP02.pdf.

Park, C. S.

Pham, H. V.

H. V. Pham, H. Murata, and Y. Okamura, Adv. OptoElectron. 10, 1155 (2008).

Pruneri, V.

M. Belmonte, V. Pruneri, and M. Orio, http://www.ecio.conference.org/2003/paper/2003ThP02.pdf.

Shahraam, A. V.

Wooten, L.

L. Wooten, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[CrossRef]

Yi, L.

L. Yi and Z. Huijuan, Semicond. Optoelectron. 29, 809 (2008).

Mengzhou, Z. Huijiuan, and L. Yi, to be presented at the 2008 Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, November 7-9, 2008.

Adv. OptoElectron. (1)

H. V. Pham, H. Murata, and Y. Okamura, Adv. OptoElectron. 10, 1155 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Wooten, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[CrossRef]

J. Lightwave Technol. (2)

M. M. Howerton, C. H. Bulmer, and W. K. Burns, J. Lightwave Technol. 8, 1177 (1990).
[CrossRef]

C. S. Park and C. G. Lee, J. Lightwave Technol. 25, 1711 (2007).
[CrossRef]

J. Opt. A (1)

D. Janner, J. Opt. A 10, 104003 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Semicond. Optoelectron. (1)

L. Yi and Z. Huijuan, Semicond. Optoelectron. 29, 809 (2008).

Other (3)

Mengzhou, Z. Huijiuan, and L. Yi, to be presented at the 2008 Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, November 7-9, 2008.

William S.-C. Chang, RF Photonic Technology in Optical Fiber Links (Academic, 2002).
[CrossRef]

M. Belmonte, V. Pruneri, and M. Orio, http://www.ecio.conference.org/2003/paper/2003ThP02.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Power-reflection coefficient versus microwave frequency.

Fig. 2
Fig. 2

(a) Experiment setup for microwave modulation. (b) Optical spectrum at the output of the EOM.

Fig. 3
Fig. 3

Power dependence of the measured output harmonics, where (0) P ω 0 , (1) P ω 0 + ω m , (2) P ω 0 + 2 ω m , (3) P ω 0 + 3 ω m , and (4) P ω 0 + 4 ω m .

Fig. 4
Fig. 4

Experimental results of modulation index C m against rf.

Fig. 5
Fig. 5

Comparison of modulation index C m from calculation and experiment.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E out = A cos ( ω 0 t ) { J 0 ( C m ) cos ( ϕ dc + ϕ 0 ) + 2 n = 1 ( 1 ) n J 2 n ( C m ) cos ( ϕ dc + ϕ 0 ) cos ( 2 n ω m t ) + 2 n = 1 ( 1 ) n J 2 n 1 ( C m ) sin ( ϕ dc + ϕ 0 ) cos [ ( ( 2 n 1 ) ω m t ) ] } ,
V ( z , t ) = V p k cos [ ω m ( z υ m t ) ] ,
Δ β ( ω , z , t ) = Δ β p k cos [ ω m ( z c Δ n eff t ) ] ,
Δ ϕ ( ω , t ) = 0 1 Δ β ( ω , z , t ) d z = Δ ϕ p k ( 0 ) cos [ ω m ( t l Δ n eff c ) ] sin [ ω m l Δ n eff ( 2 c ) ] ω m l Δ n eff ( 2 c ) ,
P ω 0 + ω m P ω 0 + 3 ω m = J 1 2 ( C m ) J 3 2 ( C m ) , P ω 0 + 2 ω m P ω 0 + 4 ω m = J 2 2 ( C m ) J 4 2 ( C m ) .

Metrics