Abstract

A photodetector can be applied onto a silicon-wire waveguide tap to monitor light signals on waveguides. To meet the complexity of optical integrated circuits, the proposed photodetector would be positioned onto a wafer base instead of being employed and terminated at the edge end of an optical component. Because the silicon-wire-based optical directional coupler shows an undesirably high level of polarization-dependent loss on the tap port compared with the primary port, the complex refractive index of the reflective metal layer was proposed integrated into the direction-changing tap region, made using a 54.7° angle from anisotropic silicon wet etching. This structure compensates for the polarization dependent loss of the tapping signal power for the primary port monitoring.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
    [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef] [PubMed]
  3. S. H. Hsu and J. Chan, Opt. Lett. 31, 2142 (2006).
    [CrossRef] [PubMed]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
    [CrossRef]
  5. S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
    [CrossRef]
  6. G. T. Reed, Silicon Photonics: the State of the Art (Wiley, 2008), Chap. 2.
    [CrossRef]
  7. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  8. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998), pp. 341-485.
  9. Y. A. Vlasov and S. J. McNab, Opt. Express 12, 1622 (2004).
    [CrossRef] [PubMed]

2008 (1)

G. T. Reed, Silicon Photonics: the State of the Art (Wiley, 2008), Chap. 2.
[CrossRef]

2007 (1)

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
[CrossRef]

2006 (2)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

S. H. Hsu and J. Chan, Opt. Lett. 31, 2142 (2006).
[CrossRef] [PubMed]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

1999 (1)

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

1998 (1)

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998), pp. 341-485.

Al Sayeed, C. A.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
[CrossRef]

Almeida, V. R.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Chan, J.

Chen, Y. J.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Hryniewicz, J. V.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

Hsu, S. H.

S. H. Hsu and J. Chan, Opt. Lett. 31, 2142 (2006).
[CrossRef] [PubMed]

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

Hua, H.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Johnson, F. G.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

King, O.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

Lipson, M.

McNab, S. J.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998), pp. 341-485.

Panepucci, R. R.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, Silicon Photonics: the State of the Art (Wiley, 2008), Chap. 2.
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Stone, D. R.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

Vlasov, Y. A.

Vukovic, A.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Yang, O. W. W.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
[CrossRef]

Electron. Lett. (1)

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, Electron. Lett. 35, 1248 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

IET Optoelectron. (1)

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and H. Hua, IET Optoelectron. 1, 178 (2007).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

G. T. Reed, Silicon Photonics: the State of the Art (Wiley, 2008), Chap. 2.
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998), pp. 341-485.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Directional-coupler-based waveguide tap monitor composed by the input port, a coupling length, primary port, tap port, direction-changing region, and photodetector. (b) The function diagram and the inset SEM for the direction-changing region were demonstrated.

Fig. 2
Fig. 2

Effective index variation for TE and TM modes of silicon-wire waveguide on the C/L-band.

Fig. 3
Fig. 3

FDTD was utilized to simulate and predict the modal performance in the direction-changing region after silicon-wire waveguides.

Fig. 4
Fig. 4

Refractive indices varied with the real and imaginary parts, separately, from 4-to-6 and 2-to-4, and the PDL performance was estimated by FDTD simulation.

Metrics