Abstract

We propose and demonstrate what we believe to be a new, simple, and compact all-fiber design for arbitrary-order ultrafast optical temporal differentiation. The proposed design allows us to implement any desired differentiation order using a maximum of two concatenated fiber gratings, both operating in transmission. A single specially apodized chirped fiber Bragg grating is required for implementing any even-order differentiator, whereas the immediately next odd-order differentiator can be implemented by concatenating a long-period fiber-grating first-order differentiator. Besides its simplicity, this scheme provides an optimized energetic efficiency. We experimentally demonstrate a set of high-order all-optical time differentiators (up to the fourth order) capable of accurately processing arbitrary optical waveforms with picosecond time features.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  2. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
    [CrossRef] [PubMed]
  3. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 1872 (2007).
    [CrossRef] [PubMed]
  4. M. Horowitz and Y. Silberberg, Opt. Lett. 22, 1760 (1997).
    [CrossRef]
  5. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
    [CrossRef] [PubMed]
  6. J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.
  7. L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
    [CrossRef]
  8. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]

2007 (4)

J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
[CrossRef] [PubMed]

J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 1872 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

1997 (1)

1995 (1)

Ahn, T. -J.

J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.

Azaña, J.

J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
[CrossRef] [PubMed]

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
[CrossRef] [PubMed]

Berger, N. K.

Carballar, A.

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Chériaux, G.

Dong, J.

Fischer, B.

Horowitz, M.

Huang, D.

Joffre, M.

Kam, C. H.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Kulishov, M.

Lepetit, L.

Levit, B.

Liu, D.

Morandotti, R.

Ngo, N. Q.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Park, Y.

J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.

R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
[CrossRef] [PubMed]

Plant, D. V.

Rivas, L. M.

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Silberberg, Y.

Singh, K.

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Slavík, R.

J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.

R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
[CrossRef] [PubMed]

Tjin, S. C.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Xu, J.

Yu, S. F.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Zhang, X.

IEEE Photon. Technol. Lett. (1)

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

J. Azaña, Y. Park, T.-J. Ahn, and R. Slavík, in OSA BGPP 2007 (Optical Society of America, 2007), paper JWA42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the time-domain characterization of the fabricated temporal differentiators.

Fig. 2
Fig. 2

Normalized FBG apodization profiles designed for the second- and fourth-order differentiators (a). Measured spectral characteristics of the fabricated differentiation devices: (b) first, (c) second, and (d) fourth orders. The ideal amplitude spectral responses are also shown (dashed curves). Subfigures (c) and (d) are normalized; notice that the expected background losses in these gratings are < 0.5   dB .

Fig. 3
Fig. 3

Measured intensity (solid curves) and phase (dotted curves) temporal responses of the fabricated (a) second-, (b) third-, and (c) fourth-order differentiators. The numerically calculated successive time derivatives of the input pulse (shown in the inset using the same temporal scale) are also shown (dashed curves).

Fig. 4
Fig. 4

Estimated processing error as a function of the input pulse bandwidth for each of the demonstrated differen tiators.

Metrics