Abstract

Three-beam interference lithography is used to create hole/dot photoresist patterns with hexagonal symmetry. This is achieved by modifying a standard two-beam Lloyd’s mirror interferometer into a three-beam interferometer, with the position of the mirrors chosen to guarantee 120° symmetry of exposure. Compared to commonly used three-beam setups, this brings the advantage of simplified alignment, as the position of the mirrors with respect to the substrate is fixed. Pattern periodicities from several wavelengths λ down to 23λ are thus easily and continuously accessible by simply rotating the three-beam interferometer. Furthermore, in contrast to standard Lloyd’s interferometers, only a single exposure is needed to create hole/dot photoresist patterns.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
    [CrossRef]
  2. W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
    [CrossRef] [PubMed]
  3. R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
    [CrossRef]
  4. U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
    [CrossRef]
  5. A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
    [CrossRef]
  6. N. Kramer, M. Niesten, and C. Schönenberger, Appl. Phys. Lett. 67, 2989 (1995).
    [CrossRef]
  7. J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
    [CrossRef]
  8. W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
    [CrossRef] [PubMed]
  9. J. Moon, J. Ford, and S. Yang, Polym. Adv. Technol. 17, 83 (2006).
    [CrossRef]
  10. C. Lu, X. K. Hu, S. S. Dimov, and R. H. Lipson, Appl. Opt. 46, 7202 (2007).
    [CrossRef] [PubMed]
  11. M. E. Walsh, Ph.D. thesis (Massachusetts Institute of Technology, 2004).
  12. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, Opt. Express 13, 9605 (2005).
    [CrossRef] [PubMed]
  13. J. L. Stay and T. K. Gaylord, Appl. Opt. 47, 3221 (2008).
    [CrossRef] [PubMed]
  14. C. L. Haynes and R. P. V. Duyne, J. Phys. Chem. B 105, 5599 (2001).
    [CrossRef]

2008 (2)

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

J. L. Stay and T. K. Gaylord, Appl. Opt. 47, 3221 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Lu, X. K. Hu, S. S. Dimov, and R. H. Lipson, Appl. Opt. 46, 7202 (2007).
[CrossRef] [PubMed]

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
[CrossRef]

2006 (3)

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

J. Moon, J. Ford, and S. Yang, Polym. Adv. Technol. 17, 83 (2006).
[CrossRef]

2005 (2)

2004 (1)

M. E. Walsh, Ph.D. thesis (Massachusetts Institute of Technology, 2004).

2003 (1)

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

2001 (1)

C. L. Haynes and R. P. V. Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

1997 (1)

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

1995 (1)

N. Kramer, M. Niesten, and C. Schönenberger, Appl. Phys. Lett. 67, 2989 (1995).
[CrossRef]

Acevedo, D.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
[CrossRef]

Barbero, C.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
[CrossRef]

Brezger, B.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

Choi, W. K.

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Dawood, M. K.

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Dimov, S. S.

Drewsen, M.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Drodofsky, U.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Duyne, R. P. V.

C. L. Haynes and R. P. V. Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

Ford, J.

J. Moon, J. Ford, and S. Yang, Polym. Adv. Technol. 17, 83 (2006).
[CrossRef]

Gaylord, T. K.

Gösele, U.

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. V. Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

Hong, M. H.

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Hsu, C. C.

Hu, X. K.

Ji, R.

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

Kramer, N.

N. Kramer, M. Niesten, and C. Schönenberger, Appl. Phys. Lett. 67, 2989 (1995).
[CrossRef]

Lai, N. D.

Lasagni, A.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
[CrossRef]

Lee, W.

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

Liang, W. P.

Liew, T. H.

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Lin, C. H.

Lin, J. H.

Lipson, R. H.

Liu, K.

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

Lu, C.

Martín, J.

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

Mlynek, J.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Moon, J.

J. Moon, J. Ford, and S. Yang, Polym. Adv. Technol. 17, 83 (2006).
[CrossRef]

Mücklich, F.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
[CrossRef]

Nielsch, K.

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

Niesten, M.

N. Kramer, M. Niesten, and C. Schönenberger, Appl. Phys. Lett. 67, 2989 (1995).
[CrossRef]

Nogués, J.

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

Pfau, T.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Ross, C.

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

Scholz, R.

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

Schönenberger, C.

N. Kramer, M. Niesten, and C. Schönenberger, Appl. Phys. Lett. 67, 2989 (1995).
[CrossRef]

Schuller, I. K.

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

Schulze, T.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Smith, H. I.

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Stay, J. L.

Stuhler, J.

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Thompson, C. V.

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Vicente, J.

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

Walsh, M. E.

M. E. Walsh, Ph.D. thesis (Massachusetts Institute of Technology, 2004).

Yang, S.

J. Moon, J. Ford, and S. Yang, Polym. Adv. Technol. 17, 83 (2006).
[CrossRef]

Adv. Eng. Mater. (1)

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, Adv. Eng. Mater. 9, 99 (2007).
[CrossRef]

Adv. Mater. (1)

R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, and J. Mlynek, Appl. Phys. B 65, 755 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

N. Kramer, M. Niesten, and C. Schönenberger, Appl. Phys. Lett. 67, 2989 (1995).
[CrossRef]

J. Magn. Magn. Mater. (1)

J. Martín, J. Nogués, K. Liu, J. Vicente, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
[CrossRef]

J. Phys. Chem. B (1)

C. L. Haynes and R. P. V. Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

Nano Lett. (1)

W. K. Choi, T. H. Liew, M. K. Dawood, H. I. Smith, C. V. Thompson, and M. H. Hong, Nano Lett. 8, 3799 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Polym. Adv. Technol. (1)

J. Moon, J. Ford, and S. Yang, Polym. Adv. Technol. 17, 83 (2006).
[CrossRef]

Proc. IEEE (1)

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

Small (1)

W. Lee, R. Ji, C. Ross, U. Gösele, and K. Nielsch, Small 2, 978 (2006).
[CrossRef] [PubMed]

Other (1)

M. E. Walsh, Ph.D. thesis (Massachusetts Institute of Technology, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Standard Lloyd’s mirror interferometer, (b) incident wave vectors, and (c) corresponding line-type intensity pattern; (d) three-beam interferometer, (e) resulting wave vectors, and (f) corresponding hexagonal intensity pattern.

Fig. 2
Fig. 2

SEM image of a photoresist pattern after exposure and development. The scale bar in the large, low resolution image is 1 μ m and 100 nm in the inset. The periodicity is p = 186 nm and the holes in the photoresist have a diameter of around 100 nm .

Fig. 3
Fig. 3

Periodicity versus angle to the normal of the sample θ for a laser wavelength of λ = 244 nm . Just like for a standard Lloyd’s interferometer θ is adjusted by rotating the sample holder in the plane of the optical table.The solid curve follows Eq. (4) while the markers represent experimental results, which fit the line very well. With the introduced setup periodicities from 1000 nm down to 165 nm are continuously achievable. The periodicity of a normal two-beam setup is shown as a dashed-dotted line for comparison.

Fig. 4
Fig. 4

(a) SEM image of a sample fabricated in the two-beam setup, double exposure ( t = 200 s ) and a rotation of 60° in between. (b) Contour plot of the calculated intensity for this sample. (c) SEM image of a sample fabricated in the three-beam setup. (d) Calculated intensity distribution for this sample. All four images show patterns with hexagonal symmetry, but in (a) one obtains elliptical holes while in (c) they have a circular shape. The calculated intensities support this finding; the scale bar is 100 nm in each image.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k 1 , 2 - beam = k ( sin θ , 0 , cos θ ) ,
k 2 , 2 - beam = k ( sin θ , 0 , cos θ ) ,
k 1 , 3 - beam = k ( sin θ , 0 , cos θ ) ,
k 2 , 3 - beam = k ( 0.5 sin θ , 3 4 sin θ , cos θ ) ,
k 3 , 3 - beam = k ( 0.5 sin θ , 3 4 sin θ , cos θ ) .
p 2 - beam = λ 2 π sin ( θ ) ,
p 3 - beam = λ 1.5 π sin ( θ )

Metrics