Abstract

We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
    [CrossRef]
  2. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004).
    [CrossRef] [PubMed]
  3. T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
    [CrossRef] [PubMed]
  4. M. Erdelyi and G. Gajdatsy, J. Opt. A 10, 055007 (2008).
    [CrossRef]
  5. J. Li, K. Ueda, M. Musha, A. Shirakawa, and L. Zhong, Opt. Lett. 31, 2969 (2006).
    [CrossRef] [PubMed]
  6. S. Ramachandran, S. Golowitch, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, Opt. Lett. 30, 2864 (2005).
    [CrossRef] [PubMed]
  7. P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984).
    [CrossRef]
  8. T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
    [CrossRef]
  9. S. Shalklan, Appl. Opt. 30, 4379 (1991).
    [CrossRef]
  10. D. McGloin, N. B. Simpson, and M. J. Padgett, Appl. Opt. 37, 469 (1998).
    [CrossRef]
  11. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
    [CrossRef]
  12. S. Kawakami and S. Nishida, IEEE J. Quantum Electron. QE-11, 130 (1975).
    [CrossRef]
  13. H. C. Lefevre, Electron. Lett. 16, 778 (1980).
    [CrossRef]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Table 14-6.

2009 (1)

Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
[CrossRef]

2008 (2)

M. Erdelyi and G. Gajdatsy, J. Opt. A 10, 055007 (2008).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
[CrossRef]

2006 (1)

2005 (2)

2004 (1)

2003 (1)

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

1998 (1)

1991 (1)

1984 (1)

P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984).
[CrossRef]

1983 (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Table 14-6.

1980 (1)

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

1975 (1)

S. Kawakami and S. Nishida, IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

Alexeyev, A. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
[CrossRef]

Choudhury, A.

Courjon, D.

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

de Fornel, F.

P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984).
[CrossRef]

Dimarcello, F. V.

Erdelyi, M.

M. Erdelyi and G. Gajdatsy, J. Opt. A 10, 055007 (2008).
[CrossRef]

Facq, P.

P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984).
[CrossRef]

Fleming, J.

Gajdatsy, G.

M. Erdelyi and G. Gajdatsy, J. Opt. A 10, 055007 (2008).
[CrossRef]

Ghalmi, S.

Golowitch, S.

Grosjean, T.

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

Jean, F.

P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984).
[CrossRef]

Kawakami, S.

S. Kawakami and S. Nishida, IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

Lapin, B. P.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
[CrossRef]

Lefevre, H. C.

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

Li, J.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Table 14-6.

McGloin, D.

Monberg, E.

Musha, M.

Nishida, S.

S. Kawakami and S. Nishida, IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

Padgett, M. J.

Ramachandran, S.

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Shalklan, S.

Sheppard, C. J. R.

Shirakawa, A.

Simpson, N. B.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Table 14-6.

Ueda, K.

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

Wisk, P.

Yan, M. F.

Yavorsky, M. A.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
[CrossRef]

Zhan, Q.

Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
[CrossRef]

Zhong, L.

Adv. Opt. Photonics (1)

Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (2)

P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984).
[CrossRef]

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawakami and S. Nishida, IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

J. Microsc. (1)

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

J. Opt. A (2)

M. Erdelyi and G. Gajdatsy, J. Opt. A 10, 055007 (2008).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008).
[CrossRef]

Opt. Commun. (1)

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Opt. Lett. (2)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Table 14-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Principle of the refraction of a guided mode from an etched fiber into a high-index medium. (b) Refraction in a solid polyester resin. (c) Experimental setup with eight detectors; a small polarizer orthoradially oriented is placed in front of each detector.

Fig. 2
Fig. 2

Efficient length of the filament versus wavelength and residual cladding thickness. Fiber parameters measured by XLIM laboratory: a = 2.02 μ m , n 1 = 1.47 , n 2 = 1.4622 ; oil, n 3 = 1.486 .

Fig. 3
Fig. 3

(a) Refracted beams obtained with a 15 mm filament. Detector positions and analyzer orientation are marked. (b) Gray-level encoding of the azimuthal intensity distribution versus the rotation of the sqeezer.

Fig. 4
Fig. 4

Normalized azimuthal variation of the signal with different adjustments of the stress controller.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J n ( u ) u J n + 1 ( u ) K n ( w ) w K n + 1 ( w ) = ( J n ( u ) u J n + 1 ( u ) + I n ( w ) w I n + 1 ( w ) ) × K n + 1 ( c w ) I n + 1 ( w ) K n + 1 ( w ) I n + 1 ( c w ) K n ( c w ) c w K n + 1 ( c w ) H n ( c W ) c W H n + 1 ( c W ) I n ( c w ) c w I n + 1 ( c w ) H n ( c W ) c W H n + 1 ( c W ) ,
u 2 + w 2 = V 2 , u 2 + W 2 = V 2 n 1 n 3 n 1 n 2 .
k = 2 π λ , β = ( n 1 k ) 2 ( u a ) 2 .
I ( θ ) = 1 + γ [ cos ( θ ) cos ( θ 0 θ ) ] 2 ,

Metrics