Abstract

A compact optofluidic refractometer is demonstrated. Consisting of a grating structure with rectangular grooves integrated into a microfluidic network, its working principle is based on the modulation of the zeroth-order diffraction intensity of the transmission induced by the refractive index (RI) of a sample fluid that fills the groove space. The performance of the device is dependent on the grating structure parameters such as thickness. Theoretical analysis and experimental measurements agree well with each other and both demonstrate that having a thicker grating results in higher sensitivity but a smaller measurement range, and vice versa. It can also be expected that smaller changes in the RI can be resolved by using a detector with a lower detection limit.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Haeberle and R. Zengerle, Lab Chip 7, 1094 (2007).
    [CrossRef] [PubMed]
  2. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, Opt. Lett. 19, 2062 (1994).
    [CrossRef] [PubMed]
  3. T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
    [CrossRef]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  5. J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
    [CrossRef]
  6. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  8. Y. Hongbin, Z. Guangya, C. Fook Siong, and L. Feiwen, Opt. Lett. 33, 548 (2008).
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

S. Haeberle and R. Zengerle, Lab Chip 7, 1094 (2007).
[CrossRef] [PubMed]

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
[CrossRef]

2006 (1)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

1996 (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

1994 (1)

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Day, D.

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Fantini, S.

Feiwen, L.

Fook Siong, C.

Franceschini, M. A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Gratton, E.

Gu, M.

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Guangya, Z.

Haeberle, S.

S. Haeberle and R. Zengerle, Lab Chip 7, 1094 (2007).
[CrossRef] [PubMed]

Hongbin, Y.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Maier, J. S.

Rao, Y. J.

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
[CrossRef]

Song, Y.

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
[CrossRef]

Walker, S. A.

Wang, J. L.

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
[CrossRef]

Wu, J.

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Zengerle, R.

S. Haeberle and R. Zengerle, Lab Chip 7, 1094 (2007).
[CrossRef] [PubMed]

Zhu, T.

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, IEEE Photon. Technol. Lett. 19, 1946 (2007).
[CrossRef]

Lab Chip (1)

S. Haeberle and R. Zengerle, Lab Chip 7, 1094 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the structure design.

Fig. 2
Fig. 2

Simulation results of the zeroth-order diffraction efficiency as a function of the fluid RI under different grating thicknesses.

Fig. 3
Fig. 3

Process flow.

Fig. 4
Fig. 4

Fabricated grating structure. (a) 75 μ m design. (b) 20 μ m design.

Fig. 5
Fig. 5

Schematic of the measurement setup.

Fig. 6
Fig. 6

Measurement results about the intensity of the zeroth-order diffraction as a function of the sample RI obtained from 75- and 20 - μ m -thick grating designs.

Metrics