Abstract

We experimentally demonstrate the contradirectional optical coupling between two parallel fibers that contain a long-period fiber grating and a tilted fiber Bragg grating, respectively. Strong coupling occurs between the cladding modes of the same order over the overlapped resonance bands of the two gratings. By optimizing the coupling conditions, we achieve a peak coupling efficiency of 80% at 1534  nm with a 3 dB bandwidth of 0.12  nm and a side-mode suppression ratio of 16  dB, regardless of which fiber light is launched into. This coupler configuration can be explored for the development of narrow-band all-fiber optical components.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
    [CrossRef]
  3. J. Feinberg, V. Grubsky, and D. S. Starodubov, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper FB5.
  4. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, J. Lightwave Technol. 22, 1358 (2004).
    [CrossRef]
  5. Y. H. Han, S. B. Lee, C. S. Kim, and M. Y. Jeong, Opt. Lett. 31, 703 (2006).
    [CrossRef] [PubMed]
  6. M. J. Kim, Y. M. Jung, B. H. Kim, W. T. Han, and B. H. Lee, Opt. Express 15, 10855 (2007).
    [CrossRef] [PubMed]
  7. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, Opt. Express 15, 17645 (2007).
    [CrossRef] [PubMed]
  8. L. Dong, B. Ortega, and L. Reekie, Appl. Opt. 37, 5099 (1998).
    [CrossRef]
  9. G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
    [CrossRef]

2007 (2)

2006 (1)

2004 (1)

2001 (1)

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

2000 (1)

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

1998 (1)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Chan, F. Y. M.

Chiang, K. S.

Dong, L.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Feinberg, J.

J. Feinberg, V. Grubsky, and D. S. Starodubov, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper FB5.

Ferdinand, P.

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

Grubsky, V.

J. Feinberg, V. Grubsky, and D. S. Starodubov, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper FB5.

Han, W. T.

Han, Y. H.

Jeong, M. Y.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Jung, Y. M.

Kim, B. H.

Kim, C. S.

Kim, M. J.

Laffont, G.

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

Lee, B. H.

Lee, S. B.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Li, S.

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

Liu, Y.

Ng, M. N.

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, J. Lightwave Technol. 22, 1358 (2004).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

Ortega, B.

Ran, Z. L.

Rao, Y. J.

Reekie, L.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Starodubov, D. S.

J. Feinberg, V. Grubsky, and D. S. Starodubov, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper FB5.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Zhu, T.

Appl. Opt. (1)

Electron. Lett. (1)

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

J. Lightwave Technol. (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, J. Lightwave Technol. 22, 1358 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

J. Feinberg, V. Grubsky, and D. S. Starodubov, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper FB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two parallel single-mode fibers that contain an LPFG and a TFBG, respectively.

Fig. 2
Fig. 2

Normalized transmission spectra of the (a) LPFG and (b) TFBG (measured in air) fabricated for the optical coupling experiments.

Fig. 3
Fig. 3

Normalized output spectra of the coupler formed with the two gratings in Fig. 2 (using a grating offset distance of 90 mm and a surrounding index of 1.420): (a) outputs from port 2 and port 3 with light launched into port 1, (b) outputs from port 4 and port 1 with light launched into port 3.

Fig. 4
Fig. 4

Dependence of the peak coupling efficiency on the grating offset distance (using a surrounding index of 1.420) with light launched into (open circles) port 1 or (open triangles) port 3.

Metrics