Abstract

We report a simple and low-cost fabrication of antireflection subwavelength grating (SWG) structures on GaAs using the lenslike shape transfer by a holographic lithography and a reflowed photoresist mask. The use of an additional thermal reflow process enhances the close packing of two-dimensional SWGs with a conical shape. The aspect ratio of conical SWG was also controlled easily by adjusting the rf power during the dry etch process. The fabricated SWGs exhibited low reflection properties over a wide spectral range, in agreement with the calculated values using by a rigorous coupled-wave analysis simulation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
    [CrossRef] [PubMed]
  2. P. Lalanne and G. M. Morris, Proc. SPIE 2776, 300 (1996).
    [CrossRef]
  3. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
    [CrossRef]
  4. Y. Kanamori, H. Kikuta, and K. Hane, Jpn. J. Appl. Phys. Part 1 39, L735 (2000).
    [CrossRef]
  5. S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
    [CrossRef]
  6. Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
    [CrossRef]
  7. C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett. 81, 2980 (2002).
    [CrossRef]
  8. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, Opt. Lett. 26, 1642 (2001).
    [CrossRef]
  9. P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
    [CrossRef]
  10. A. Fernandez and D. W. Phillion, Appl. Opt. 37, 473 (1998).
    [CrossRef]
  11. M. Karlsson and F. Nikolajeff, Appl. Opt. 41, 902 (2002).
    [CrossRef] [PubMed]
  12. D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
    [CrossRef]
  13. M. G. Moharam, Proc. SPIE 883, 8 (1988).

2008 (1)

S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

2006 (1)

D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

2003 (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

2002 (2)

C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett. 81, 2980 (2002).
[CrossRef]

M. Karlsson and F. Nikolajeff, Appl. Opt. 41, 902 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

Y. Kanamori, H. Kikuta, and K. Hane, Jpn. J. Appl. Phys. Part 1 39, L735 (2000).
[CrossRef]

1999 (2)

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
[CrossRef]

1998 (1)

1997 (1)

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

1996 (1)

P. Lalanne and G. M. Morris, Proc. SPIE 2776, 300 (1996).
[CrossRef]

1988 (1)

M. G. Moharam, Proc. SPIE 883, 8 (1988).

Arikawa, K.

D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Chou, S. T.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Eisner, M.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Fauchet, P. M.

C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett. 81, 2980 (2002).
[CrossRef]

Fernandez, A.

Foletti, S.

D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Hane, K.

Y. Kanamori, H. Kikuta, and K. Hane, Jpn. J. Appl. Phys. Part 1 39, L735 (2000).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
[CrossRef]

Haselbeck, S.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Herzig, H. P.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Kanamori, Y.

Y. Kanamori, H. Kikuta, and K. Hane, Jpn. J. Appl. Phys. Part 1 39, L735 (2000).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
[CrossRef]

Karlsson, M.

Kikuta, H.

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, Opt. Lett. 26, 1642 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, Jpn. J. Appl. Phys. Part 1 39, L735 (2000).
[CrossRef]

Kintaka, K.

Lalanne, P.

P. Lalanne and G. M. Morris, Proc. SPIE 2776, 300 (1996).
[CrossRef]

Mizutani, A.

Mlynek, J.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Moharam, M. G.

M. G. Moharam, Proc. SPIE 883, 8 (1988).

Morris, G. M.

P. Lalanne and G. M. Morris, Proc. SPIE 2776, 300 (1996).
[CrossRef]

Nakano, H.

Nikolajeff, F.

Nishii, J.

Nussbaum, P.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Palasantzas, G.

D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Phillion, D. W.

Sasaki, M.

Schaffer, E.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Stabenga, D. G.

D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Steiner, U.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Striemer, C. C.

C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett. 81, 2980 (2002).
[CrossRef]

Volkel, R.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Walheim, S.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Yu, Z.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett. 81, 2980 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. T. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

Y. Kanamori, H. Kikuta, and K. Hane, Jpn. J. Appl. Phys. Part 1 39, L735 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. R. Soc. London, Ser. B (1)

D. G. Stabenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Proc. SPIE (2)

M. G. Moharam, Proc. SPIE 883, 8 (1988).

P. Lalanne and G. M. Morris, Proc. SPIE 2776, 300 (1996).
[CrossRef]

Pure Appl. Opt. (1)

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Science (1)

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the lens-like shape transfer procedures for the fabrication of the SWGs on GaAs.

Fig. 2
Fig. 2

SEM images of the PR patterns on GaAs substrate (a) before thermal reflow process and after thermal reflow treatments of (b) 160 ° C , (c) 180 ° C , and (d) 200 ° C for 40 s .

Fig. 3
Fig. 3

SEM images of the fabricated GaAs SWG structures with different rf powers: (a) 150 W for 15 min (SWG1) and (b) 100 W for 12 min (SWG2).

Fig. 4
Fig. 4

(a) Measured reflectance as a function of wavelength for the fabricated GaAs SWG1 and SWG2 structures. The measured and simulated reflectances of bulk GaAs were shown as a reference. The inset shows an SWG structure with conical profile used in this simulation. (b) Simulated reflectance spectra of the fabricated GaAs SWG1 and SWG2 structures were shown together with measured results.

Fig. 5
Fig. 5

Contour plot of the variation of reflectance as a function of cone height and wavelength for a 300 nm period of the array.

Metrics