Abstract

The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25wt.% terbium-doped-core phosphate fiber to be 6.2±0.4rad(Tm) at 1053nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Turner and R. H. Stolen, Opt. Lett. 6, 322 (1981).
    [CrossRef] [PubMed]
  2. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, Opt. Lett. 7, 238 (1982).
    [CrossRef] [PubMed]
  3. J.-F. Lafortune and R. Vallée, Opt. Commun. 86, 497 (1991).
    [CrossRef]
  4. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
    [CrossRef] [PubMed]
  5. K. Shiraishi, S. Sugaya, and S. Kawakami, Appl. Opt. 23, 1103 (1984).
    [CrossRef] [PubMed]
  6. J. Ballato and E. Snitzer, Appl. Opt. 34, 6848 (1995).
    [CrossRef] [PubMed]
  7. G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).
  8. T. Yoshino, J. Opt. Soc. Am. B 22, 1856 (2005).
    [CrossRef]
  9. NP Photonics, Inc., Tucson, Ariz. 85747, http://www.npphotonics.com.
  10. M. McCaig and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, 1987).
  11. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, 2001).
  12. M.J.Weber, ed., CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials (CRC Press, 1995).

2007

2005

1995

1991

J.-F. Lafortune and R. Vallée, Opt. Commun. 86, 497 (1991).
[CrossRef]

1984

1982

1981

Agrawal, G. P.

G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).

Ballato, J.

Barlow, A. J.

Clegg, A. G.

M. McCaig and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, 1987).

Day, G. W.

Fujimoto, Y.

Kan, H.

Kawakami, S.

Kawanaka, J.

Kawashima, T.

Lafortune, J.-F.

J.-F. Lafortune and R. Vallée, Opt. Commun. 86, 497 (1991).
[CrossRef]

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, 2001).

McCaig, M.

M. McCaig and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, 1987).

Nakatsuka, M.

Nozawa, H.

Payne, D. N.

Ramskov-Hansen, J. J.

Shiraishi, K.

Snitzer, E.

Stolen, R. H.

Sugaya, S.

Tokita, S.

Turner, E. H.

Vallée, R.

J.-F. Lafortune and R. Vallée, Opt. Commun. 86, 497 (1991).
[CrossRef]

Yagi, H.

Yanagitani, T.

Yasuhara, R.

Yoshida, H.

Yoshino, T.

Appl. Opt.

J. Opt. Soc. Am. B

Opt. Commun.

J.-F. Lafortune and R. Vallée, Opt. Commun. 86, 497 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Other

NP Photonics, Inc., Tucson, Ariz. 85747, http://www.npphotonics.com.

M. McCaig and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, 1987).

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, 2001).

M.J.Weber, ed., CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials (CRC Press, 1995).

G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized difference between factors Γ and α for a single-mode fiber as a function of normalized frequency v.

Fig. 2
Fig. 2

Experimental configuration of the Faraday rotation measurement.

Fig. 3
Fig. 3

Theoretical (solid curve) and measured (stars) magnetic density flux distribution B z along the center axis z; dashed lines represent the magnet ends.

Fig. 4
Fig. 4

Measured (stars) rotation angle and corresponding curve fit (solid curve) at 1053 nm along the center axis z.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V eff = V core Γ + V clad ( 1 Γ ) ,
B z ( z ) = B r 2 { z + l 2 [ a 1 2 + ( z + l 2 ) 2 ] 1 2 z + l 2 [ a 2 2 + ( z + l 2 ) 2 ] 1 2 z l 2 [ a 1 2 + ( z l 2 ) 2 ] 1 2 + z l 2 [ a 2 2 + ( z l 2 ) 2 ] 1 2 } ,

Metrics