Abstract

We experimentally demonstrate vector beams having an elliptical symmetry of polarization, breaking the cylindrical symmetry of vector beams (e.g., radially polarized beams). Applications of such beams vary from material processing, lithography, and optical memories to excitation of elliptically shaped nanoparticles and plasmonic structures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nature Photon. 2, 311 (2008).
    [CrossRef]
  2. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  3. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [PubMed]
  4. M. R. Beversluis, L. Novotny, and S. J. Stranick, Opt. Express 14, 2650 (2006).
    [CrossRef] [PubMed]
  5. N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
    [CrossRef]
  6. E. Y. S. Yew and C. J. R. Sheppard, Opt. Lett. 32, 3417 (2007).
    [CrossRef] [PubMed]
  7. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, J. Opt. Soc. Am. A 22, 1432 (2005).
    [CrossRef]
  8. G. M. Lerman and U. Levy, Opt. Express 16, 4567 (2008).
    [CrossRef] [PubMed]
  9. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  10. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [CrossRef]
  11. A. Shoham, R. Vander, and S. G. Lipson, Opt. Lett. 31, 3405 (2006).
    [CrossRef] [PubMed]
  12. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  13. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  14. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, Opt. Lett. 29, 1718 (2004).
    [CrossRef] [PubMed]
  15. G. M. Lerman and U. Levy, Opt. Lett. 32, 2194 (2007).
    [CrossRef] [PubMed]
  16. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
    [CrossRef]
  17. A. Yanai and U. Levy, Opt. Express 17, 924 (2009).
    [CrossRef] [PubMed]
  18. G. M. Lerman and U. Levy, Opt. Lett. 33, 2782 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

2007 (2)

2006 (2)

2005 (1)

2004 (2)

U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, Opt. Lett. 29, 1718 (2004).
[CrossRef] [PubMed]

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (2)

2000 (2)

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

1990 (1)

1959 (1)

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Aeschimann, L.

Beversluis, M. R.

Biener, G.

Bomzon, Z.

Brown, T. G.

Descrovi, E.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Fainman, Y.

Ford, D. H.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Hasman, E.

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Herzig, H. -P.

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Kimura, W. D.

Kleiner, V.

Leger, J. R.

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Levy, U.

Lipson, S. G.

Nakagawa, W.

Novotny, L.

Pang, L.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Ramsay, E.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nature Photon. 2, 311 (2008).
[CrossRef]

Reid, D. T.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nature Photon. 2, 311 (2008).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Serrels, K. A.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nature Photon. 2, 311 (2008).
[CrossRef]

Sheppard, C. J. R.

Shoham, A.

Staufer, U.

Stranick, S. J.

Tidwell, S. C.

Tsai, C. H.

Vaccaro, L.

Vander, R.

Warburton, R. J.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nature Photon. 2, 311 (2008).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Yanai, A.

Yew, E. Y. S.

Youngworth, K. S.

Zhan, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature Photon. (1)

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nature Photon. 2, 311 (2008).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representations of LIPERS and LIPEAS polarization fields with ε = 0.85 . The arrows represent the polarization direction at each point. (a) LIPERS polarized field. (b) LIPEAS polarized field.

Fig. 2
Fig. 2

Focal plane intensity distribution of the LIPERS input field with increasing eccentricity. From left to right the eccentricity has the values of 0, 0.6, 0.8, 0.9, and 0.99. All the intensity distributions are normalized by the maximal value of these distributions. The adiabatic transformation of the focal plane intensity distribution from one spot into two separate lobes is clearly observed. The combination of the eccentricity of the input field and the NA of the lens can yield a desired intensity distribution.

Fig. 3
Fig. 3

Far-field intensity distributions for several LIPERS fields. (a)–(c) Computer simulations of LIPERS field with eccentricities of 0.79, 0.87, and 0.935, respectively. (d)–(f) CCD records of the Fourier plane of these polarization fields.

Fig. 4
Fig. 4

Mapping of the polarization field by intensity measurement behind a polarizer. The output polarization field from an LIPERS transformer device with ε = 0.79 is imaged onto a CCD camera. A polarizer is put between the device and the camera to convert the polarization distribution into a measurable intensity modulation. (a)–(d) Several angles of the polarizer with respect to the device.

Fig. 5
Fig. 5

Polarization dependence on the azimuthal angle. The theoretical [red (dark) curve] and experimental (circles) dependences of the polarization of a LIPERS field with an eccentricity of 0.79 on θ—the azimuthal angle. The experimental results were measured by taking one of the pictures shown in Fig. 4 and integrating its intensity along the radial direction for several values of the azimuthal angle θ. The results are normalized, and the theoretical results for the radially polarized field are shown as well [green (light) curve] for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k g ( x , y ) = 2 π Λ [ cos ( θ ( x , y ) 2 ) x ̂ + sin ( θ ( x , y ) 2 ) y ̂ ] ,

Metrics