Abstract

We describe chalcogenide glass (ChG)-based nanostructures for use as substrates for surface-enhanced Raman scattering (SERS). Such substrates were fabricated by exploiting the photosensitivity of ChG. This allows convenient control of the shape, size, and spacing of the nanostructures. The substrates were used to investigate the sample-concentration and excitation-power dependences of SERS from Rhodamine 6G molecules. A sensitivity of 1μM was achieved at low excitation irradiance, and a semilinear concentration dependence was found for concentrations below 100μM, demonstrating the potential of these ChG-based SERS substrates for high-sensitivity quantitative analysis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  2. G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
    [CrossRef] [PubMed]
  3. M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
    [CrossRef]
  4. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
    [CrossRef]
  5. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
    [CrossRef]
  6. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
    [CrossRef]
  7. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
    [CrossRef]
  8. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
    [CrossRef]
  9. C. McLaughlin, D. Graham, and W. E. Smith, J. Phys. Chem. B 106, 5408 (2002).
    [CrossRef]
  10. P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
    [CrossRef]
  11. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
    [CrossRef]
  12. V. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, Opt. Lett. 30, 2900 (2005).
    [CrossRef] [PubMed]

2007 (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
[CrossRef]

2006 (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

2005 (3)

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef] [PubMed]

V. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, Opt. Lett. 30, 2900 (2005).
[CrossRef] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

2003 (1)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

2002 (1)

C. McLaughlin, D. Graham, and W. E. Smith, J. Phys. Chem. B 106, 5408 (2002).
[CrossRef]

2000 (2)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

1982 (1)

P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Baker, G. A.

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef] [PubMed]

Bartlett, P. N.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

Baumberg, J. J.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
[CrossRef]

Cintra, S.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Eggleton, B. J.

Emory, S. R.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Fu, L.

Graham, D.

C. McLaughlin, D. Graham, and W. E. Smith, J. Phys. Chem. B 106, 5408 (2002).
[CrossRef]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

Hohenau, A.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Kahl, M.

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

Kelf, T. A.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

Krenn, J. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
[CrossRef]

Lee, P. C.

P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

Leitner, A.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Littler, I. C. M.

Luther-Davies, B.

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

McLaughlin, C.

C. McLaughlin, D. Graham, and W. E. Smith, J. Phys. Chem. B 106, 5408 (2002).
[CrossRef]

Meisel, D.

P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
[CrossRef]

Moore, D. S.

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef] [PubMed]

Moss, D. J.

Nie, S.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Rochette, M.

Ruan, Y. L.

Russell, A. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Shokooh-Saremi, M.

Smith, W. E.

C. McLaughlin, D. Graham, and W. E. Smith, J. Phys. Chem. B 106, 5408 (2002).
[CrossRef]

Ta'eed, V.

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Voges, E.

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

von Freymann, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Wegener, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Adv. Mater. (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Mater. 18, 265 (2006).
[CrossRef]

Anal. Bioanal. Chem. (1)

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
[CrossRef]

Electrochem. Commun. (1)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, Electrochem. Commun. 7, 740 (2005).
[CrossRef]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

J. Phys. Chem. B (2)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

C. McLaughlin, D. Graham, and W. E. Smith, J. Phys. Chem. B 106, 5408 (2002).
[CrossRef]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scanning electron microscopy (SEM) and (b) AFM micrographs of ChG SERS substrates. Experimental conditions: As 2 S 3 film thickness, 2 μ m ; α = 60 ° ; Λ = 730   nm ; d = 460   nm ; each exposure, 30 s; amine concentration in the etching solution, 0.025 mol. %; etching time, 6 min.

Fig. 2
Fig. 2

(a) Absorption spectra of SERS substrates fabricated at different interference angles α (lines at 632.8 nm correspond to the reference He–Ne laser line to monitor the position of the moving mirror in the FT-IR spectrometer). (b) Detected SERS signals at different R6G concentrations with an excitation of 50 mW ( 0.28   kW / cm 2 ) ; arrows indicate R6G vibrational peaks. (c) Detected SERS relative intensity (calculated by subtracting the value of the noise level from the absolute peak intensity) versus concentration. (d) R6G Raman spectra obtained with A, SERS substrates at 50 mW ( 0.28   kW / cm 2 ) and 100 μ M concentration; B, silver nanoparticles at 500 mW ( 2.8   kW / cm 2 ) and 1 mM concentration; C, silver nanoparticles at 50 mW ( 0.28   kW / cm 2 ) and 1 mM concentration; D, smooth Au surface at 500 mW ( 2.8   kW / cm 2 ) and 1 mM concentration (spectrometer resolution was 4 cm 1 and the number of scans was 32). Inset, an extinction spectrum of silver nanoparticles used in the experiment. The spectra are offset for clarity.

Fig. 3
Fig. 3

(a) Detected SERS signals for different input excitation powers. (b) Detected SERS intensity versus excitation power (spectrometer resolution was 4 cm 1 and the number of scans was 32).

Metrics