Abstract

Microwave frequency combs are generated by optically injecting a semiconductor laser (slave) with repetitive pulses from an optoelectronic feedback laser (master). By varying the delay time, regular pulsing states with different pulsing frequencies are generated in the master laser. The pulsing output is then optically injected into the slave laser to produce desired microwave frequency combs. Microwave frequency combs with broad bandwidths and low nonharmonic spurious noise are demonstrated experimentally. To analyze their stabilities and spectral purities, single-sideband phase noise of each microwave frequency comb line is measured. Noise suppression of the microwave frequency comb relative to the injected regular pulsing state is also investigated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
    [CrossRef]
  2. A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 (1999).
    [CrossRef]
  3. S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329 (2001).
    [CrossRef]
  4. F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron. 40, 682 (2004).
    [CrossRef]
  5. S. C. Chan, R. Diaz, and J. M. Liu, Opt. Quantum Electron. 40, 83 (2008).
    [CrossRef]
  6. S. C. Chan, G. Q. Xia, and J. M. Liu, Opt. Lett. 32, 1917 (2007).
    [CrossRef] [PubMed]
  7. P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
    [CrossRef] [PubMed]
  8. H. Y. Ryu, H. S. Moon, and H. S. Suh, Opt. Express 15, 11396 (2007).
    [CrossRef] [PubMed]
  9. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, Opt. Express 16, 2520 (2008).
    [CrossRef] [PubMed]
  10. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
    [CrossRef]
  11. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
    [CrossRef]
  12. J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
    [CrossRef]
  13. T. B. Simpson and J. M. Liu, IEEE Photon. Technol. Lett. 7, 709 (1995).
    [CrossRef]
  14. For example, Picosecond Pulse Labs model 7112 comb generator.
  15. T. Sakamoto, T. Kawanihsi, and M. Izutsu, Opt. Lett. 31, 811 (2006).
    [CrossRef] [PubMed]
  16. N. Schunk and K. Petermann, IEEE J. Quantum Electron. 22, 642 (1986).
    [CrossRef]

2008

S. C. Chan, R. Diaz, and J. M. Liu, Opt. Quantum Electron. 40, 83 (2008).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, Opt. Express 16, 2520 (2008).
[CrossRef] [PubMed]

2007

2006

2004

F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron. 40, 682 (2004).
[CrossRef]

2001

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329 (2001).
[CrossRef]

1999

A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 (1999).
[CrossRef]

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

1997

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[CrossRef]

1995

T. B. Simpson and J. M. Liu, IEEE Photon. Technol. Lett. 7, 709 (1995).
[CrossRef]

1986

N. Schunk and K. Petermann, IEEE J. Quantum Electron. 22, 642 (1986).
[CrossRef]

Arcizet, O.

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Bennett, S.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Burr, E.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Cai, B.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Chan, S. C.

S. C. Chan, R. Diaz, and J. M. Liu, Opt. Quantum Electron. 40, 83 (2008).
[CrossRef]

S. C. Chan, G. Q. Xia, and J. M. Liu, Opt. Lett. 32, 1917 (2007).
[CrossRef] [PubMed]

Chen, H. F.

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
[CrossRef]

Delfyett, P. J.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Del'Haye, P.

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Diaz, R.

S. C. Chan, R. Diaz, and J. M. Liu, Opt. Quantum Electron. 40, 83 (2008).
[CrossRef]

Gavrielides, A.

A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 (1999).
[CrossRef]

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Gough, O.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Hohl, A.

A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 (1999).
[CrossRef]

Holzwarth, R.

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Huang, C. B.

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[CrossRef]

Izutsu, M.

Kawanihsi, T.

Kippenberg, T. J.

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Leaird, D. E.

Lin, F. Y.

F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron. 40, 682 (2004).
[CrossRef]

Liu, J. M.

S. C. Chan, R. Diaz, and J. M. Liu, Opt. Quantum Electron. 40, 83 (2008).
[CrossRef]

S. C. Chan, G. Q. Xia, and J. M. Liu, Opt. Lett. 32, 1917 (2007).
[CrossRef] [PubMed]

F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron. 40, 682 (2004).
[CrossRef]

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329 (2001).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
[CrossRef]

T. B. Simpson and J. M. Liu, IEEE Photon. Technol. Lett. 7, 709 (1995).
[CrossRef]

Meng, X. J.

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
[CrossRef]

Moon, H. S.

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Park, S. G.

Petermann, K.

N. Schunk and K. Petermann, IEEE J. Quantum Electron. 22, 642 (1986).
[CrossRef]

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Ryu, H. Y.

Sakamoto, T.

Schiliesser, A.

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Schunk, N.

N. Schunk and K. Petermann, IEEE J. Quantum Electron. 22, 642 (1986).
[CrossRef]

Seeds, A. J.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Simpson, T. B.

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[CrossRef]

T. B. Simpson and J. M. Liu, IEEE Photon. Technol. Lett. 7, 709 (1995).
[CrossRef]

Suh, H. S.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[CrossRef]

Tang, S.

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329 (2001).
[CrossRef]

Weiner, A. M.

Wilken, T.

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Xia, G. Q.

IEEE J. Quantum Electron.

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329 (2001).
[CrossRef]

F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron. 40, 682 (2004).
[CrossRef]

N. Schunk and K. Petermann, IEEE J. Quantum Electron. 22, 642 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, IEEE Photon. Technol. Lett. 9, 1325 (1997).
[CrossRef]

T. B. Simpson and J. M. Liu, IEEE Photon. Technol. Lett. 7, 709 (1995).
[CrossRef]

Nature

P. Del'Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

S. C. Chan, R. Diaz, and J. M. Liu, Opt. Quantum Electron. 40, 83 (2008).
[CrossRef]

Phys. Rev. Lett.

A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 (1999).
[CrossRef]

Quantum Semiclassic. Opt.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[CrossRef]

Other

For example, Picosecond Pulse Labs model 7112 comb generator.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic setup of the proposed microwave-frequency-comb-generation system. The slave laser (SL) is optically injected by the regular pulsing state from a master laser (ML) subject to optoelectronic feedback. PD, photodetector; OI, optical isolator; BS, beam splitter; PBS, polarizing beam splitter; HW, half-wave plate; VA, variable attenuator; FR, Faraday rotator; A, amplifier; and PSA, power spectrum analyzer. Solid and dashed lines indicate optical and electrical paths, respectively.

Fig. 2
Fig. 2

Power spectra of the (a) ML and (b) SL output for an injected regular pulsing state with 1.2 GHz pulsing frequency. Within a ± 3 dB amplitude variation, the microwave frequency comb generated in (b) has a 14 GHz bandwidth.

Fig. 3
Fig. 3

Power spectra of the (a) ML and (b) SL output for an injected regular pulsing state with 990 MHz pulsing frequency. Within a ± 5 dB amplitude variation, the microwave frequency comb generated in (b) has a 20 GHz bandwidth.

Fig. 4
Fig. 4

(a) Power spectra of the first harmonics of the output from the ML and SL relative to the noise level (horizontal line). (b) Single-sideband phase noise of the ML (dotted curves) and the SL (solid curves) for the first (lower curve), fourth (middle curves), and 11th (upper curves) harmonics at offset frequencies between 10 and 500 kHz . The resolution bandwidth is 1 kHz .

Metrics