Abstract

We report on the generation of high-energy ultrashort pulses from a mode-locked Yb-doped large-mode-area fiber laser operating in the all-normal dispersion regime. The self-starting fiber laser emits 9W of average output power at a pulse repetition rate of 9.7MHz, corresponding to a pulse energy of 927nJ. The laser produces positively chirped 8ps output pulses, which are then compressed down to 711fs. These compressed pulses exhibit megawatt-level peak powers. To our knowledge, this is the first time that a mode-locked fiber oscillator has generated femtosecond pulses with pulse energies approaching the microjoule level in combination with high average output power. Numerical simulations show excellent agreement with experimental results and reveal further scaling potential, which is discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription