Abstract

We introduce a particular low-symmetry (point group of unit cell C1) planar periodic arrangement of magnetic split-ring resonators that acts as an effective optical wave plate. We show that this behavior specifically results from the in-plane interactions among the individual split-ring resonators. Measured normal-incidence transmittance and conversion spectra of gold-based samples fabricated via electron-beam lithography show fundamental resonances at around 235 THz frequency (1275 nm wavelength) that are in good agreement with theory.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  2. V. M. Shalaev, Nat. Photonics 1, 41 (2007).
    [CrossRef]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
    [CrossRef] [PubMed]
  4. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
    [CrossRef]
  5. E. Shamonina and L. Solymar, J. Magn. Magn. Mater. 300, 38 (2006).
    [CrossRef]
  6. G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
    [CrossRef]
  7. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
    [CrossRef]
  8. N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
    [CrossRef]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  10. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
    [CrossRef] [PubMed]

2008

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
[CrossRef]

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

2007

V. M. Shalaev, Nat. Photonics 1, 41 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
[CrossRef] [PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

2006

E. Shamonina and L. Solymar, J. Magn. Magn. Mater. 300, 38 (2006).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

2005

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Burger, S.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

Dolling, G.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

Eng, L. M.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
[CrossRef] [PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
[CrossRef]

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

Olk, P.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Renger, J.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Schädle, A.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, Nat. Photonics 1, 41 (2007).
[CrossRef]

Shamonina, E.

E. Shamonina and L. Solymar, J. Magn. Magn. Mater. 300, 38 (2006).
[CrossRef]

Solymar, L.

E. Shamonina and L. Solymar, J. Magn. Magn. Mater. 300, 38 (2006).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
[CrossRef] [PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Wenzel, M. T.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

Zhou, J.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Adv. Mater.

N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
[CrossRef]

Appl. Phys. Lett.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Magn. Magn. Mater.

E. Shamonina and L. Solymar, J. Magn. Magn. Mater. 300, 38 (2006).
[CrossRef]

Nano Lett.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

Nat. Photonics

V. M. Shalaev, Nat. Photonics 1, 41 (2007).
[CrossRef]

Nature Mater.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
[CrossRef]

Phys. Rep.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
[CrossRef]

Phys. Rev. Lett.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Science

C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of (a) a usual SRR array, (b) the particular low-symmetry arrangement discussed in this Letter. The dashed white lines highlight one unit cell. The decomposition of (b) into the blue and red parts illustrates that by symmetry—without SRR interactions—the array has identical optical properties for horizontal and vertical incident polarizations, respectively. No polarization conversion is expected under these conditions.

Fig. 2
Fig. 2

(a) Electron micrograph of a representative region of one of the samples investigated. (b) Measured normal-incidence transmittance spectra T. T (conversion) and T refer to detecting the component perpendicular and parallel to the incident linear polarization behind the sample, respectively. The four different linear incident polarizations along the horizontal (green), the vertical (black), and the two diagonals (red and blue) are shown.

Fig. 3
Fig. 3

(a) Definition of the geometry assumed in our numerical calculations [compare with experiment in Fig. 2a]. Gold thickness is 50 nm. (b) Calculated normal-incidence transmittance spectra that can directly be compared with the experiment in Fig. 2b. The dashed vertical lines indicate the two frequencies for which Fig. 4 shows field distributions.

Fig. 4
Fig. 4

Snapshots of the axial magnetic component B z in an x y plane cutting through the middle of the SRRs ( red = positive , green = zero , blue = negative ). The incident polarization is along either of the two diagonals (see white arrows). (a) 240 and (b) 232 THz frequencies [these two frequencies are highlighted by the two dashed black vertical lines in Fig. 3b]. Parameters are as in Fig. 3.

Metrics