Abstract

The cw and Q-switched performance of Er:YAG lasers operating at 1645nm were measured. Guided by previous work in the literature, we sought to improve efficiency at low pulse repetition frequencies by decreasing the doping level from 0.5to0.25at.% to reduce upconversion losses. Only a small improvement was obtained with this first-time-tested lower-doped material. Measurements of the fluorescence due to upconversion directly indicated that loss due to this process could not account for the observed power loss at low pulse repetition frequencies. Enhanced green emission during Q-switched operation, resulting from two-photon absorption of 1645nm intracavity laser light, is reported for what we believe to be the first time. Measurements indicated that the output loss from this process is negligible.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, Opt. Lett. 29, 1075 (2004).
    [CrossRef] [PubMed]
  2. K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
    [CrossRef]
  3. D. Shen, J. Sahu, and W. A. Clarkson, Opt. Lett. 31, 754 (2006).
    [CrossRef] [PubMed]
  4. S. D. Setzler, K. J. Snell, T. M. Pollak, P. A. Budni, Y. E. Young, and E. P. Chicklis, Opt. Lett. 28, 1787 (2003).
    [CrossRef] [PubMed]
  5. R. Ifflander, Solid-State Lasers for Materials Processing (Springer-Verlag, 2001), p. 31.
  6. N. P. Barnes, IEEE J. Quantum Electron. 13, 435 (2007).
    [CrossRef]
  7. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
    [CrossRef]
  8. S. A. Pollack, D. B. Chang, and N. L. Morse, J. Appl. Phys. 60, 4077 (1986).
    [CrossRef]
  9. S. A. Pollack, D. B. Chang, and N. L. Morse, Opt. Quantum Electron. 22, S75 (1990).
    [CrossRef]
  10. D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
    [CrossRef]
  11. N. P. Barnes and B. M. Walsh, IEEE J. Quantum Electron. 35, 101 (1999).
    [CrossRef]
  12. H. Mahr, in Quantum Electronics, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1 (part A), Chap. 4.

2007

N. P. Barnes, IEEE J. Quantum Electron. 13, 435 (2007).
[CrossRef]

2006

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

D. Shen, J. Sahu, and W. A. Clarkson, Opt. Lett. 31, 754 (2006).
[CrossRef] [PubMed]

2005

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

2004

2003

1999

N. P. Barnes and B. M. Walsh, IEEE J. Quantum Electron. 35, 101 (1999).
[CrossRef]

1992

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

1990

S. A. Pollack, D. B. Chang, and N. L. Morse, Opt. Quantum Electron. 22, S75 (1990).
[CrossRef]

1986

S. A. Pollack, D. B. Chang, and N. L. Morse, J. Appl. Phys. 60, 4077 (1986).
[CrossRef]

Allik, T. H.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

Barnes, N. P.

N. P. Barnes, IEEE J. Quantum Electron. 13, 435 (2007).
[CrossRef]

N. P. Barnes and B. M. Walsh, IEEE J. Quantum Electron. 35, 101 (1999).
[CrossRef]

Budni, P. A.

Chang, D. B.

S. A. Pollack, D. B. Chang, and N. L. Morse, Opt. Quantum Electron. 22, S75 (1990).
[CrossRef]

S. A. Pollack, D. B. Chang, and N. L. Morse, J. Appl. Phys. 60, 4077 (1986).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

Chicklis, E. P.

Clarkson, W. A.

Gruber, J. B.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

Ifflander, R.

R. Ifflander, Solid-State Lasers for Materials Processing (Springer-Verlag, 2001), p. 31.

Klotz, M. J.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

Leyva, V.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Mahr, H.

H. Mahr, in Quantum Electronics, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1 (part A), Chap. 4.

Morse, N. L.

S. A. Pollack, D. B. Chang, and N. L. Morse, Opt. Quantum Electron. 22, S75 (1990).
[CrossRef]

S. A. Pollack, D. B. Chang, and N. L. Morse, J. Appl. Phys. 60, 4077 (1986).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

Pollack, S. A.

S. A. Pollack, D. B. Chang, and N. L. Morse, Opt. Quantum Electron. 22, S75 (1990).
[CrossRef]

S. A. Pollack, D. B. Chang, and N. L. Morse, J. Appl. Phys. 60, 4077 (1986).
[CrossRef]

Pollak, T. M.

Reeder, R. A.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Russell, C. C.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

Sahu, J.

Sardar, D. K.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

Setzler, S. D.

Shen, D.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

Snell, K. J.

Spariosu, K.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, IEEE J. Quantum Electron. 35, 101 (1999).
[CrossRef]

Young, Y. E.

IEEE J. Quantum Electron.

N. P. Barnes, IEEE J. Quantum Electron. 13, 435 (2007).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
[CrossRef]

N. P. Barnes and B. M. Walsh, IEEE J. Quantum Electron. 35, 101 (1999).
[CrossRef]

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

J. Appl. Phys.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, J. Appl. Phys. 97, 123501 (2005).
[CrossRef]

S. A. Pollack, D. B. Chang, and N. L. Morse, J. Appl. Phys. 60, 4077 (1986).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

S. A. Pollack, D. B. Chang, and N. L. Morse, Opt. Quantum Electron. 22, S75 (1990).
[CrossRef]

Other

R. Ifflander, Solid-State Lasers for Materials Processing (Springer-Verlag, 2001), p. 31.

H. Mahr, in Quantum Electronics, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1 (part A), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic for the end-pumped Er:YAG laser. Abbreviations are defined in the text.

Fig. 2
Fig. 2

cw output power of Er:YAG rods versus incident pump power.

Fig. 3
Fig. 3

QS 0.25%, 40 mm Er:YAG laser: average power versus PRF.

Fig. 4
Fig. 4

Relative IR upconversion emission intensity for 0.25% and 0.5% Er:YAG versus pump power.

Fig. 5
Fig. 5

Green fluorescence amplitude (near 545 nm ) versus QS intracavity peak power (at 1645 nm ). The solid and open symbols depict data from 0.25% and 0.5% Er:YAG rods, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η p = ( t st t p ) [ 1 exp ( t p t st ) ] ,

Metrics