Abstract

With a modulator-based 10GHz optical-frequency-comb generator at 1.55μm, we report a 20GHz repetitive train of optical pulses as short as 450fs. The timing stability of the 20GHz pulses, in addition to the phase for optical-comb modes, shows a strong dependence on the relative frequency detuning between the comb generator’s cavity and the seed cw laser. With a new and simple scheme, the comb generator’s cavity resonance was locked to a narrow-linewidth seed laser within an estimated optical-frequency range 6MHz, enabling high-fidelity 20GHz subpicosecond pulses and stable optical-frequency-comb generation for indefinite periods.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
    [CrossRef]
  2. T. F. Carruthers and I. N. Duling, Opt. Lett. 21, 1927 (1996).
    [CrossRef] [PubMed]
  3. E. Yoshida and M. Nakazawa, Electron. Lett. 34, 1753 (1998).
    [CrossRef]
  4. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, Opt. Lett. 31, 2870 (2006).
    [CrossRef] [PubMed]
  5. M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
    [CrossRef]
  6. G. M. Macfarlane, A. S. Bell, E. Riis, and A. I. Ferguson, Opt. Lett. 21, 534 (1996).
    [CrossRef] [PubMed]
  7. M. Kato, K. Fujiura, and T. Kurihara, Appl. Opt. 44, 1263 (2005).
    [CrossRef] [PubMed]
  8. S. Xiao, L. Hollberg, N. Newbury, and S. Diddams, Opt. Express 16, 8498 (2008).
    [CrossRef] [PubMed]
  9. Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
    [CrossRef]
  10. T. Saitoh, M. Kourogi, and M. Ohtsu, IEEE Photonics Technol. Lett. 7, 197 (1995).
    [CrossRef]
  11. M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
    [CrossRef]

2008 (1)

2007 (1)

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

1998 (1)

E. Yoshida and M. Nakazawa, Electron. Lett. 34, 1753 (1998).
[CrossRef]

1996 (2)

1995 (2)

T. Saitoh, M. Kourogi, and M. Ohtsu, IEEE Photonics Technol. Lett. 7, 197 (1995).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
[CrossRef]

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Aschwanden, A.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Bell, A. S.

Carruthers, T. F.

Delfyett, P. J.

Diddams, S.

Duling, I. N.

Ferguson, A. I.

Fujiura, K.

Gee, S.

Hollberg, L.

Huang, C. B.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

Imai, K.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

Jiang, Z.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

Kato, M.

Keller, U.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Kourogi, M.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

T. Saitoh, M. Kourogi, and M. Ohtsu, IEEE Photonics Technol. Lett. 7, 197 (1995).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Krainer, L.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Kurihara, T.

Leaird, D.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

Lecomte, S.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Lorenser, D.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Macfarlane, G. M.

Miao, H.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Nakazawa, M.

E. Yoshida and M. Nakazawa, Electron. Lett. 34, 1753 (1998).
[CrossRef]

Newbury, N.

Ohtsu, M.

T. Saitoh, M. Kourogi, and M. Ohtsu, IEEE Photonics Technol. Lett. 7, 197 (1995).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Ozharar, S.

Paschotta, R.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Quinlan, F.

Riis, E.

Saitoh, T.

T. Saitoh, M. Kourogi, and M. Ohtsu, IEEE Photonics Technol. Lett. 7, 197 (1995).
[CrossRef]

Spühler, G. J.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Takeuchi, Y.

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
[CrossRef]

Unold, H. J.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Weiner, A. M.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

Weingarten, K. J.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Widiyatomoko, B.

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
[CrossRef]

Xiao, S.

Yoshida, E.

E. Yoshida and M. Nakazawa, Electron. Lett. 34, 1753 (1998).
[CrossRef]

Zeller, S. C.

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

E. Yoshida and M. Nakazawa, Electron. Lett. 34, 1753 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, IEEE J. Quantum Electron. 43, 1163 (2007).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu, IEEE J. Quantum Electron. 31, 2120 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Saitoh, M. Kourogi, and M. Ohtsu, IEEE Photonics Technol. Lett. 7, 197 (1995).
[CrossRef]

New J. Phys. (1)

R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, New J. Phys. 6, 174 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic principle of the OFCG for the generation of short pulses at a high repetition rate. ν o is the frequency of the optical cw seed laser. ν cavity is the OFCG cavity resonance frequency. MD is a microwave detector diode, and PD is a high-speed photodiode. The dotted line represents the sinusoidal modulation; pulses measured directly out of the PD are generated at every zero modulation phase, and the pulses labeled A and B represent the two pairs of interleaved 10 GHz pulse trains.

Fig. 2
Fig. 2

(a) Optical spectrum of the OFCG output. The spectral resolution was 0.02 nm . The discrete 10 GHz ( 0.08 nm ) frequency comb lines are resolved, indicated by the inset. (b) Intensity autocorrelation of the 20 GHz pulse. The dotted curve is a Lorentzian fit.

Fig. 3
Fig. 3

(a) Microwave spectrum of the 20 GHz output pulse. The resolution bandwidth was 100 kHz . The spectrum noise floor is that of the spectrum analyzer. (b) Power at 10 GHz (dashed and square curve) and 20 GHz (solid and circle curve) for different frequency detunings. The curves (dashed and solid) are calculated values, and the discrete points (square and circle) are experimental measurements.

Fig. 4
Fig. 4

(a) Time evolution of the microwave power from the spectrum of the output pulse. The data were recorded at 2   samples min . (b) Fluctuation of the relative timing delay (offset from 50 ps ) between the two interleaved 10 GHz pulses. The data were recorded at 10   samples min .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 1 π f m × sin 1 ( 2 π δ υ β × FSR ) 1 π f m 2 π δ υ β × FSR .
Δ P n P n ( 1 π n F β ) ( 2 π × δ υ β × FSR ) 2 ,
Δ ϕ = n × sin 1 ( 2 π × δ υ β × FSR ) 2 n π δ υ β × FSR ,

Metrics