Abstract

We demonstrate a novel, versatile method for sensitive measurement of nonresonant third-order optical nonlinearities in waveguides. The measurement is referenced to a bulk sample with well-known nonlinear optical properties, thus ruling out the influence of laser pulse parameters like duration, contrast, and spectral phase or amplitude. Since the generated mixing product is heterodyne detected, extremely small third-order optical nonlinearities, e.g., from air-filled short waveguides, can be measured.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  2. A. S. L. Gomes, E. L. Filho, C. B. de Araújo, D. Rativa, and R. E. de Araujo, Opt. Express 15, 1712 (2007).
    [CrossRef] [PubMed]
  3. J. Hein, M. Helbig, and S. Rentsch, Appl. Opt. 36, 1173 (1997).
    [CrossRef] [PubMed]
  4. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, Opt. Lett. 20, 988 (1995).
    [CrossRef] [PubMed]
  5. C. Malouin, A. Villeneuve, G. Vitrant, P. Cottin, and R. A. Lessard, J. Opt. Soc. Am. B 15, 826 (1998).
    [CrossRef]
  6. F. Louradour, E. Lopez-Lago, V. Couderc, V. Messager, and A. Barthelemy, Opt. Lett. 24, 1361 (1999).
    [CrossRef]
  7. L. Sarger, P. Segonds, L. Canioni, F. Adamietz, A. Ducasse, C. Duchesne, E. Fargin, R. Olazcuaga, and G. Le Flem, J. Opt. Soc. Am. B 11, 995 (1994).
    [CrossRef]
  8. M. Hoffmann, S. D. Brorson, J. Mørk, and A. Mecozzi, Appl. Phys. Lett. 68, 3236 (1996).
    [CrossRef]
  9. H. Hundertmark, D. Kracht, M. Engelbrecht, D. Wandt, and C. Fallnich, Opt. Express 12, 3178 (2004).
    [CrossRef] [PubMed]
  10. G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
    [CrossRef]
  11. J. E. Sharping, S. Ghosh, D. G. Ouzounov, J. Hensley, and A. L. Gaeta, in Proceedings of the Lasers and Electro-Optics Society (IEEE, 2005). pp. 310-311.

2007 (1)

2004 (1)

1999 (1)

1998 (1)

1997 (1)

1996 (1)

M. Hoffmann, S. D. Brorson, J. Mørk, and A. Mecozzi, Appl. Phys. Lett. 68, 3236 (1996).
[CrossRef]

1995 (1)

1994 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1975 (1)

G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
[CrossRef]

Adamietz, F.

Barthelemy, A.

Bjorklund, G. C.

G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
[CrossRef]

Brorson, S. D.

M. Hoffmann, S. D. Brorson, J. Mørk, and A. Mecozzi, Appl. Phys. Lett. 68, 3236 (1996).
[CrossRef]

Canioni, L.

Cottin, P.

Couderc, V.

de Araujo, R. E.

de Araújo, C. B.

Ducasse, A.

Duchesne, C.

Engelbrecht, M.

Fallnich, C.

Fargin, E.

Filho, E. L.

Gaeta, A. L.

J. E. Sharping, S. Ghosh, D. G. Ouzounov, J. Hensley, and A. L. Gaeta, in Proceedings of the Lasers and Electro-Optics Society (IEEE, 2005). pp. 310-311.

Ghosh, S.

J. E. Sharping, S. Ghosh, D. G. Ouzounov, J. Hensley, and A. L. Gaeta, in Proceedings of the Lasers and Electro-Optics Society (IEEE, 2005). pp. 310-311.

Gomes, A. S. L.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Hein, J.

Helbig, M.

Hensley, J.

J. E. Sharping, S. Ghosh, D. G. Ouzounov, J. Hensley, and A. L. Gaeta, in Proceedings of the Lasers and Electro-Optics Society (IEEE, 2005). pp. 310-311.

Hoffmann, M.

M. Hoffmann, S. D. Brorson, J. Mørk, and A. Mecozzi, Appl. Phys. Lett. 68, 3236 (1996).
[CrossRef]

Hundertmark, H.

Kato, T.

Kracht, D.

Le Flem, G.

Lessard, R. A.

Lopez-Lago, E.

Louradour, F.

Malouin, C.

Mecozzi, A.

M. Hoffmann, S. D. Brorson, J. Mørk, and A. Mecozzi, Appl. Phys. Lett. 68, 3236 (1996).
[CrossRef]

Messager, V.

Mørk, J.

M. Hoffmann, S. D. Brorson, J. Mørk, and A. Mecozzi, Appl. Phys. Lett. 68, 3236 (1996).
[CrossRef]

Nishimura, M.

Olazcuaga, R.

Ouzounov, D. G.

J. E. Sharping, S. Ghosh, D. G. Ouzounov, J. Hensley, and A. L. Gaeta, in Proceedings of the Lasers and Electro-Optics Society (IEEE, 2005). pp. 310-311.

Rativa, D.

Rentsch, S.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sarger, L.

Sasaoka, E.

Segonds, P.

Sharping, J. E.

J. E. Sharping, S. Ghosh, D. G. Ouzounov, J. Hensley, and A. L. Gaeta, in Proceedings of the Lasers and Electro-Optics Society (IEEE, 2005). pp. 310-311.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Suetsugu, Y.

Takagi, M.

van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Villeneuve, A.

Vitrant, G.

Wandt, D.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: AOM, acousto-optic modulator, EDFA, erbium-doped fiber amplifier; FWM, four-wave mixing; I.S., imaging system; ν 0 , an individual comb line of the fs-laser output; ν 1 = ν 0 + 46.65 MHz ; ν 2 = ν 0 + 63.35 MHz ; and ν LO = ν 0 + 80 MHz .

Fig. 2
Fig. 2

Imaging system. OAP; off-axis parabolic mirror (90°).

Fig. 3
Fig. 3

Free-of-laser-parameters ReBuS investigation of standard telecom (SMF28) and hollow-core fibers (HC-1550-01). The four-wave-mixing field strength E FWM is normalized to the reference-out-of-focus-value and depicted as a function of z position of the reference sample with respect to the focus ( z = 0 ) . Experimental results are depicted as wildcard (HC-1550-01) and circle symbols (SMF28). The theoretical curves (solid curves) have been calculated assuming a Gaussian beam profile and confocal parameters of 110 μ m (SMF28) and 180 μ m (HC-1550-01), corresponding to mode field diameters of 10.4 μ m and 13 μ m , respectively.

Tables (1)

Tables Icon

Table 1 Values of the Nonresonant Nonlinearity for Two Waveguides

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E FWM ( n 2 w L w A eff w R OAP 1 2 + n 2 r L r A eff r R OAP 3 2 ) k 0 P 1 2 P 2 .
E FWM , at focus E FWM , out of focus E FWM , out of focus = n 2 r n 2 w L r L w R OAP ,

Metrics