Abstract

We investigate output mode purities of Laguerre–Gaussian (LG) beams generated from four typical simultaneous amplitude and phase modulation methods with phase-only spatial light modulators (SLMs). Numerical simulations supposing the practical SLM, i.e., stepwise phase modulation with a pixelated device, predict an output mode purity of beyond 0.969 for the LG beams of less than radially and azimuthally fifth order. Experimental results of generating LG beams are also shown to demonstrate the effects of the simultaneous phase and amplitude modulation.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators

Naoya Matsumoto, Taro Ando, Takashi Inoue, Yoshiyuki Ohtake, Norihiro Fukuchi, and Tsutomu Hara
J. Opt. Soc. Am. A 25(7) 1642-1651 (2008)

Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator

Yoshiyuki Ohtake, Taro Ando, Norihiro Fukuchi, Naoya Matsumoto, Haruyasu Ito, and Tsutomu Hara
Opt. Lett. 32(11) 1411-1413 (2007)

Structure of optical singularities in coaxial superpositions of Laguerre–Gaussian modes

Taro Ando, Naoya Matsumoto, Yoshiyuki Ohtake, Yu Takiguchi, and Takashi Inoue
J. Opt. Soc. Am. A 27(12) 2602-2612 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohtake, T. Ando, N. Fukuchi, N. Matsumoto, H. Ito, and T. Hara, Opt. Lett. 32, 1411 (2007).
    [Crossref] [PubMed]
  2. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, J. Opt. Soc. Am. A 25, 1642 (2008).
    [Crossref]
  3. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, Opt. Express 14, 5581 (2006).
    [Crossref] [PubMed]
  4. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [Crossref]
  5. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
    [Crossref]
  6. J. B. Götte, K. O'Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, Opt. Express 16, 993 (2008).
    [Crossref] [PubMed]
  7. J. P. Kirk and A. L. Jones, J. Opt. Soc. Am. 61, 1023 (1971).
    [Crossref]
  8. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999).
    [Crossref]
  9. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, J. Opt. Soc. Am. A 24, 3500 (2007).
    [Crossref]
  10. X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, J. Opt. Soc. Am. A 22, 346 (2005).
    [Crossref]

2008 (2)

2007 (3)

2006 (1)

2005 (2)

1999 (1)

1971 (1)

Anderson, J. E.

Ando, T.

Arrizón, V.

Barnett, S. M.

Bos, P. J.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Campos, J.

Carrada, R.

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Cottrell, D. M.

Courtial, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[Crossref]

Davis, J. A.

Dennis, M. R.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Esposito, E.

Flossmann, F.

Franke-Arnold, S.

Fukuchi, N.

Gibson, G. M.

Girkin, J. M.

González, L. A.

Götte, J. B.

Hara, T.

Inoue, T.

Ito, H.

Jones, A. L.

Kirk, J. P.

Leach, J.

Matsumoto, N.

McConnell, G.

Miranda, F. A.

Moreno, I.

O'Holleran, K.

Ohtake, Y.

Padgett, M. J.

Pouch, J. J.

Preece, D.

Ruiz, U.

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Wang, B.

Wang, X.

Wright, A. J.

Yzuel, M. J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Examples of holographic phase patterns for generating the LG 2 1 beam via the four complex-amplitude modulation methods ( d = 6 , beam radius 100   pixels ).

Fig. 2
Fig. 2

Output mode purity of LG 2 1 beams generated via four methods varying the pitch d of the BPG pattern.

Fig. 3
Fig. 3

Observed beam patterns of the LG 2 1 beam via (a) phase-only modulation of a top-hat input beam and (b)–(e) four complex-amplitude modulation schemes. Intensity is enhanced 25 times in the left-bottom corner of each pattern (marked by dashed squares) to observe beam patterns in surrounding areas.

Tables (1)

Tables Icon

Table 1 Maximum η Values for Typical LG p l Beams Generated Holographically via Four Complex-Amplitude Modulation Methods and Phase-Only Modulation of a Top-Hat Input Beam a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u p l ( r , ϕ ) = ( 1 ) p w 0 [ 2 π p ! ( p + l ) ! ] 1 2 ( 2 r w 0 ) l × exp ( r 2 w 0 2 ) L p l ( 2 r 2 w 0 2 ) × exp { i [ l ϕ π θ ( L p l ( 2 r 2 w 0 2 ) ) ] } ,
ϕ i BG = π ( 2 r d + 1 ) d ( r i mod d ) .

Metrics