Abstract

The extraordinary transmission of light through a vertical nanoslit in a metal film is enhanced by introducing a nanocavity antenna formed by a nearby metallic nanostrip over the slit opening. For a fixed wavelength, the width of the metallic nanostrip should be chosen to make the horizontal metal–insulator–metal waveguide of finite length resonant as a Fabry–Perot cavity. When such a cavity antenna is used to enhance the transmission through a nonresonant nanoslit, the slit should be opened at a position with a maximal magnetic field in the horizontal resonant cavity. It is shown that an optimized cavity antenna can enhance greatly the transmission of light through a nonresonant nanoslit (by about 20 times) or a resonant nanoslit (by 124%). Such a transmission enhancement with a nanocavity antenna is studied for the first time, and the physical mechanism is explained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
    [CrossRef]
  3. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  4. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, Opt. Express 12, 6106 (2004).
    [CrossRef] [PubMed]
  5. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
    [CrossRef]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
    [CrossRef]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
    [CrossRef]
  8. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  9. J. H. Coombs and J. K. Gimzewski, J. Microsc. 152, 841 (1988).
    [CrossRef]
  10. I. I. Smolyaninov, M. S. Khaikin, and V. S. Edelman, Phys. Lett. A 149, 410 (1990).
    [CrossRef]
  11. T. M. Hideki and K. Yoichi, Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef]

2008 (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
[CrossRef]

2006 (1)

T. M. Hideki and K. Yoichi, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

2004 (1)

2003 (1)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

2001 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1990 (1)

I. I. Smolyaninov, M. S. Khaikin, and V. S. Edelman, Phys. Lett. A 149, 410 (1990).
[CrossRef]

1988 (1)

J. H. Coombs and J. K. Gimzewski, J. Microsc. 152, 841 (1988).
[CrossRef]

1957 (1)

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Coombs, J. H.

J. H. Coombs and J. K. Gimzewski, J. Microsc. 152, 841 (1988).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Edelman, V. S.

I. I. Smolyaninov, M. S. Khaikin, and V. S. Edelman, Phys. Lett. A 149, 410 (1990).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Gimzewski, J. K.

J. H. Coombs and J. K. Gimzewski, J. Microsc. 152, 841 (1988).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Hideki, T. M.

T. M. Hideki and K. Yoichi, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Khaikin, M. S.

I. I. Smolyaninov, M. S. Khaikin, and V. S. Edelman, Phys. Lett. A 149, 410 (1990).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Linke, R. A.

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Mansuripur, M.

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Moloney, J. V.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Pellerin, K. M.

Ritchie, R. H.

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, M. S. Khaikin, and V. S. Edelman, Phys. Lett. A 149, 410 (1990).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Vanhulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Xie, Y.

Yoichi, K.

T. M. Hideki and K. Yoichi, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Zakharian, A. R.

J. Microsc. (1)

J. H. Coombs and J. K. Gimzewski, J. Microsc. 152, 841 (1988).
[CrossRef]

Nat. Photonics (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Vanhulst, Nat. Photonics 2, 234 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

I. I. Smolyaninov, M. S. Khaikin, and V. S. Edelman, Phys. Lett. A 149, 410 (1990).
[CrossRef]

Phys. Rev. (1)

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Phys. Rev. Lett. (2)

T. M. Hideki and K. Yoichi, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Configuration of the nanocavity antenna formed by a nearby metallic nanostrip over the opening of a vertical nano slit milled in a metallic thin film.

Fig. 2
Fig. 2

Distributions of magnetic field H y for (a) horizontal resonant MIM cavity ( W p = 1 μ m , H p = 300 nm , and d = 44 nm ); (b–d) horizontal resonant cavity over a nonresonant vertical nanoslit ( W s = 25 nm , t = 390 nm ) opened at different positions ( x = 0 , 370, or 195 nm ); (e) same horizontal cavity right over a resonant vertical nanoslit ( W s = 25 nm , t = 240 nm ). The field distributions for the corresponding bare vertical nanoslits are shown in the insets of (b) and (e).

Fig. 3
Fig. 3

(a) Dependence of the transmission efficiency ( η ) on the width of the metallic nanostrip ( W p ) for different nanostrip heights ( H p ) with W s = 25 , t = 390 , and d = 44 nm . (b) Dependence of the transmission efficiency ( η ) on the width of the metallic nanostrip ( W p ) for different film thicknesses ( t ) with W s = 25 , H p = 50 , and d = 44 nm .

Metrics