Abstract

A metallic two-dimensional hole-array (2DHA) sample is successfully fabricated and its transmission property measured at mid-infrared wavelengths (λ1.520μm). At the plasmonic resonance, the 2DHA sample exhibits a normal incidence transmittance of 80% at λ=7.6μm. This corresponds to more than twice as much light that is transmitted as it impinges directly on the holes at the maxima of transmittance. This exceedingly large enhancement is attributed to a strong plasmonic resonance and an effective light concentration through an ultrathin metal film of 50nm. This advancement will pave the way to a much enhanced infrared detection using a simple and compact 2DHA architecture.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  2. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
    [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  4. H. A. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
    [CrossRef]
  6. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
    [CrossRef]
  7. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
    [CrossRef]
  8. N. Yamamoto and S. Noda, Jpn. J. Appl. Phys. Part 1 38, 1282 (1999).
    [CrossRef]
  9. M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
    [CrossRef]

2008 (1)

M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
[CrossRef]

2004 (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2001 (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

1999 (2)

1998 (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1944 (1)

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Chang, A. S. P.

M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
[CrossRef]

Chang, H. C.

M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
[CrossRef]

Chen, M.

M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Garcia-Vidal, F. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Lin, S. Y.

M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Martin-Moreno, L.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

Noda, S.

N. Yamamoto and S. Noda, Jpn. J. Appl. Phys. Part 1 38, 1282 (1999).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Yamamoto, N.

N. Yamamoto and S. Noda, Jpn. J. Appl. Phys. Part 1 38, 1282 (1999).
[CrossRef]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (1)

N. Yamamoto and S. Noda, Jpn. J. Appl. Phys. Part 1 38, 1282 (1999).
[CrossRef]

Nano Lett. (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
[CrossRef]

Phys. Rev. (1)

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

M. Chen, S. Y. Lin, H. C. Chang, and A. S. P. Chang, Phys. Rev. B 78, 085110 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of 2DHA samples. (a) Triangular array of holes. (b) Single hole. The lattice constant is a = 2.5 3.72 μ m , the diameter of holes is d = 1.3 μ m , and the thickness of the Au film is t = 50 nm . Scale bar, (a) 2 μ m and (b) 200 nm .

Fig. 2
Fig. 2

Experimental transmission spectra at normal incidence ( θ inc = 0 ° ) of 2DHA samples. The dashed curve is the transmission of a 50 nm continuous Au film. The inset shows the schematic indicating that the direction of the incident plane wave is along the z axis and the field is linearly polarized along the x axis.

Fig. 3
Fig. 3

Measured transmission spectra at normal incidence of 2DHA ( a = 2.5 and d = 1.3 μ m ) with Au film thicknesses of t = 50 , 100, and 150 nm , respectively.

Fig. 4
Fig. 4

Cross-sectional view of FDTD calculations of the electric-field strength in the vicinity of 2DHA at different incident wavelengths: (a) λ = 10.00 , (b) λ = 7.3 , and (c) λ = 7.6 μ m . The color scale denotes the normalized magnitude of the electric field.

Fig. 5
Fig. 5

Calculated E z field strength at the metal corner as a function of time at (a) λ = 10.00 and (b) λ = 7.6 μ m .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ peak = a [ 4 3 ( i 2 + i j + j 2 ) ] 1 2 ( ε m ε d ε m + ε d ) 1 2 ,

Metrics