Abstract

A fiber-optic sensing platform based on a transient and traveling long-period grating (LPG) in a single-mode optical fiber has been proposed and demonstrated. The LPG is generated by pulsed acoustic waves that propagate along the fiber. First, we demonstrate the LPG for temperature measurement along the fiber. By coating the fiber with ultrathin ionically self-assembled multilayers, we then show that the LPG is capable of detecting nanometer thickness variations of the fiber. A temperature compensation method is also proposed and demonstrated. Because the acoustically generated LPG travels along the fiber, this advance is expected to yield a highly sensitive fully distributed fiber-optic biochemical sensor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription