Abstract

A fiber-optic sensing platform based on a transient and traveling long-period grating (LPG) in a single-mode optical fiber has been proposed and demonstrated. The LPG is generated by pulsed acoustic waves that propagate along the fiber. First, we demonstrate the LPG for temperature measurement along the fiber. By coating the fiber with ultrathin ionically self-assembled multilayers, we then show that the LPG is capable of detecting nanometer thickness variations of the fiber. A temperature compensation method is also proposed and demonstrated. Because the acoustically generated LPG travels along the fiber, this advance is expected to yield a highly sensitive fully distributed fiber-optic biochemical sensor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
    [CrossRef]
  2. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  3. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
    [CrossRef]
  4. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
    [CrossRef]
  5. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
    [CrossRef] [PubMed]
  6. G. Decher, Science 277, 1232 (1997).
    [CrossRef]
  7. Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
    [CrossRef]
  8. I. M. White and X. D. Fan, Opt. Express 16, 1020 (2008).
    [CrossRef] [PubMed]
  9. J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CRC Press, 2002).
    [CrossRef]
  10. A. Safaaijazi, C. K. Jen, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 59 (1986).
    [CrossRef]

2008 (1)

2005 (2)

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
[CrossRef]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

2003 (1)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

2000 (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

1997 (2)

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

1986 (1)

A. Safaaijazi, C. K. Jen, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 59 (1986).
[CrossRef]

Bentley, W. E.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Campopiano, S.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Cheeke, N.

J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CRC Press, 2002).
[CrossRef]

Contessa, L.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Cusano, A.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Cutolo, A.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

David, J.

J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CRC Press, 2002).
[CrossRef]

Davis, C. C.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Decher, G.

G. Decher, Science 277, 1232 (1997).
[CrossRef]

DeLisa, M. P.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Fan, X. D.

Farnell, G. W.

A. Safaaijazi, C. K. Jen, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 59 (1986).
[CrossRef]

Giordano, M.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Guerra, G.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Heflin, J. R.

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
[CrossRef]

Iadicicco, A.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Jen, C. K.

A. Safaaijazi, C. K. Jen, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 59 (1986).
[CrossRef]

Kim, B. Y.

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Kim, H. S.

Kwang, I. K.

Pilevar, S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Pilla, P.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Ramachandran, S.

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
[CrossRef]

Safaaijazi, A.

A. Safaaijazi, C. K. Jen, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 59 (1986).
[CrossRef]

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Shiloach, M.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Sirkis, J. S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Stolen, R. H.

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Wang, Z. Y.

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
[CrossRef]

White, I. M.

Yun, S. H.

Zhang, Z.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, Appl. Phys. Lett. 86, 223104 (2005).
[CrossRef]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Safaaijazi, C. K. Jen, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 59 (1986).
[CrossRef]

J. Lightwave Technol. (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

G. Decher, Science 277, 1232 (1997).
[CrossRef]

Other (1)

J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CRC Press, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principle of operation of the proposed transient and traveling LPG generated by pulsed acoustic waves.

Fig. 2
Fig. 2

Distributed temperature sensing. (a) Experimental setup. (b) Plot of LPG resonant wavelengths versus fiber distance when the temperatures of the heated area were, from bottom to top, 22 ° C , 38 ° C , 50 ° C , 65 ° C , 78 ° C , 88 ° C , 106 ° C , and 120 ° C . (c) Plot of LPG resonant wavelength change at the heated area versus temperature. The solid line is a linear fit to experimental data points. (d) LPG spectral evolution as the LPG travels along the fiber. The figure shows only the spectra in the range of 1530 1560 nm . The temperature of the heated area was 120 ° C .

Fig. 3
Fig. 3

Distributed detection of nanometer thickness variation of SMF. (a) A section of the fiber was coated with ultrathin PHH/PCBS bilayers. (b), (c), and (d) are the transmission spectra of the LPGs at points A, B, C, D, and E before coating, after five bilayers coating, and after ten bilayers coating, respectively. (e) Transmission spectra of LPGs at points B and C at different room temperatures. (b)–(e) show only the spectra in the range of 1543.8 1550.2 nm .

Metrics