Abstract

Carbon nanofibers and nanotubes are currently being utilized as active elements in acoustic sensors for emerging microelectromechanical systems and nanoelectromechanical systems technologies. A methodology for measuring the displacement of carbon nanofibers in combination with heterodyne interferometry is reported here. Experimental results show that ultrasonic field detection is possible using this technique, and results are presented for measurements in the ultrasonic frequency range. This approach could potentially lead to new calibration methods for ultrasonic sensors. A different approach to that of interferometry is also reported for future investigation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription