Abstract

A theoretical model that characterizes the physical process responsible for generating ultrashort, high-energy, mode-locked pulses in a normal-dispersion laser cavity with strong spectral filtering is developed. According to this model, two of the critical physical parameters used to achieve optimal performance are the ratio of the filter bandwidth to the gain bandwidth and the placement of the output coupler in the laser cavity. The spectral filtering plays a crucial role in maintaining a short pulse duration with high energy. This phenomenon is generic to mode locking with normal dispersion.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription