Abstract

A simple time-domain optical method for estimating the depth (d) and lifetime (τ) of fluorescent inclusions in a turbid medium is described. We demonstrate the method for depth and lifetime estimation of a fluorescent inclusion directly by fitting a monoexponential decay (τeff) of the temporal position of the temporal point-spread function and the measurement of its maximum temporal position (tmax). Since both of these measurements are intensity independent, this method provides a robust and efficient approach. This method is validated with experimental data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
    [CrossRef] [PubMed]
  2. R. Weissleder and V. Ntziachrostos, Nat. Med. 9, 123 (2003).
    [CrossRef] [PubMed]
  3. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
    [CrossRef] [PubMed]
  4. J. Virostko, A. C. Powers, and E. D. Jansen, Appl. Opt. 46, 2540 (2007).
    [CrossRef] [PubMed]
  5. D. Hall, G. Ma, F. Lesage, and Y. Wang, Opt. Lett. 29, 2258 (2004).
    [CrossRef] [PubMed]
  6. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Opt. Lett. 21, 158 (1996).
    [CrossRef] [PubMed]
  7. X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, Appl. Opt. 35, 3746 (1996).
    [CrossRef] [PubMed]
  8. D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
    [CrossRef]
  9. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
    [CrossRef]
  10. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, Opt. Lett. 30, 3347 (2005).
    [CrossRef]
  11. A. T. N. Kumar, S. B. Raymond, G. Boveran, D. A. Boas, and B. J. Bacskai, Opt. Express 14, 12255 (2006).
    [CrossRef] [PubMed]
  12. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, Appl. Opt. 46, 2131 (2007).
    [CrossRef] [PubMed]
  13. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
    [CrossRef]
  14. M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28, 2331 (1989).
    [CrossRef] [PubMed]
  15. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, Appl. Opt. 30, 4507 (1991).
    [CrossRef] [PubMed]
  16. D. J. Hall and S.-H. Han, Proc. SPIE 6430, 6430T (2007).

2007

2006

2005

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, Opt. Lett. 30, 3347 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
[CrossRef] [PubMed]

2004

2003

R. Weissleder and V. Ntziachrostos, Nat. Med. 9, 123 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

2001

2000

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

1996

1991

1989

1943

S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[CrossRef]

Bacskai, B. J.

Berger, M.

Boas, D. A.

Boccara, A. C.

Boutet, J.

Boveran, G.

Chance, B.

Chandrasekhar, S.

S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[CrossRef]

Da Silva, A.

Dinten, J.-M.

Dunn, A. K.

Graves, E. E.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

Hall, D.

Hall, D. J.

D. J. Hall and S.-H. Han, Proc. SPIE 6430, 6430T (2007).

Han, S.-H.

D. J. Hall and S.-H. Han, Proc. SPIE 6430, 6430T (2007).

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

Jansen, E. D.

Kumar, A. T. N.

Laidevant, A.

Lesage, F.

Li, X. D.

Ma, G.

Moes, C. J. M.

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
[CrossRef]

Ntziachrostos, V.

R. Weissleder and V. Ntziachrostos, Nat. Med. 9, 123 (2003).
[CrossRef] [PubMed]

O'Leary, M. A.

Patterson, M. S.

Powers, A. C.

Prahl, S. A.

Raymond, S. B.

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

Skoch, J.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Virostko, J.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
[CrossRef] [PubMed]

Wang, Y.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachrostos, Nat. Med. 9, 123 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
[CrossRef]

Wilson, B. C.

Yodh, A. G.

Appl. Opt.

Med. Phys.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachrostos, Nat. Med. 9, 123 (2003).
[CrossRef] [PubMed]

Neoplasia

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. J. Hall and S.-H. Han, Proc. SPIE 6430, 6430T (2007).

Rev. Mod. Phys.

S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for the description of the photon migration.

Fig. 2
Fig. 2

(a) Fluorescence TPSFs as a function of d in logarithm scale for μ a = 2.0 × 10 3 mm 1 , μ s = 1.05 mm 1 , τ = 1.0 ns , t IRF = 1.27 ns , and σ IRF = 0.24 ns at λ = 760 nm . (b) Same as (a) but as a function of τ for d = 2 mm . (c) τ eff and t max as a function of d. (d) τ eff and t max as a function of τ.

Fig. 3
Fig. 3

Contour plot of τ eff and t max as functions of d and τ with a priori knowledge of optical properties and IRF.

Fig. 4
Fig. 4

(a) Experimental fluorescence TPSF at d top = 1 mm and at d top = 5 mm , where τ eff is evaluated via a monoexponential decay fit and t max is evaluated by inspection. (b) Experimental fluorescence TPSF at d top = 1.0 mm are compared with calculated fluorescence TPSFs assuming a finite object inclusion and a single point inclusion at d = 1.3 mm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( D ( r ) ϕ ( r , t ) ) + 1 v ϕ ( r , t ) t + μ a ( r ) ϕ ( r , t ) = S ( r s , t ) ,
G ( r , t ) = 1 ( 4 π D v t ) 3 2 exp ( r 2 4 D v t μ a v t ) ,
δ ϕ ( r s , r d , t ) = N G ( r r s , t ) [ n ( r ) e t τ τ ] G ( r d r , t ) exp [ ( t t IRF ) 2 σ IRF 2 ] d r ,

Metrics