Abstract

An oscillating wave displacement sensor based on the enhanced Goos–Hänchen (G–H) effect in a symmetrical metal-cladding optical waveguide is proposed. Since the detected signal is irrelevant to the power fluctuation of the incident light and the magnitude of the G–H shift is enhanced to hundreds of micrometers, a 40pm resolution is demonstrated in our experiment without employing any complicated optical equipment and servo techniques.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Teng and K. C. Lang, Opt. Commun. 280, 16 (2007).
    [CrossRef]
  2. R. L. Rich and D. G. Myszka, Curr. Opin. Biotechnol. 11, 54 (2000).
    [CrossRef] [PubMed]
  3. J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
    [CrossRef]
  4. F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
    [CrossRef]
  5. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, Opt. Lett. 32, 1432 (2007).
    [CrossRef] [PubMed]
  6. F. Goos and H. Hächen, Ann. Phys. 1, 333 (1947).
    [CrossRef]
  7. T. Hashimoto and T. Yoshino, Opt. Lett. 14, 913 (1989).
    [CrossRef] [PubMed]
  8. X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
    [CrossRef]
  9. C. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
    [CrossRef]
  10. X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
    [CrossRef]
  11. H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
    [CrossRef]
  12. H. Gilles, S. Girard, and J. Hamel, Opt. Lett. 27, 1421 (2002).
    [CrossRef]
  13. L. Chen, Z. Cao, Q. Shen, X. Deng, F. Ou, and Y. Feng, J. Lightwave Technol. 25, 539 (2007).
    [CrossRef]
  14. W. P. Chen and J. M. Chen, J. Opt. Soc. Am. 71, 189 (1981).
    [CrossRef]
  15. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]

2007 (3)

2006 (2)

F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

2004 (4)

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

C. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

2002 (1)

2000 (1)

R. L. Rich and D. G. Myszka, Curr. Opin. Biotechnol. 11, 54 (2000).
[CrossRef] [PubMed]

1989 (1)

1981 (1)

1969 (1)

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

1947 (1)

F. Goos and H. Hächen, Ann. Phys. 1, 333 (1947).
[CrossRef]

Cao, Z.

L. Chen, Z. Cao, Q. Shen, X. Deng, F. Ou, and Y. Feng, J. Lightwave Technol. 25, 539 (2007).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, Opt. Lett. 32, 1432 (2007).
[CrossRef] [PubMed]

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
[CrossRef]

Chen, F.

F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
[CrossRef]

Chen, J. M.

Chen, L.

Chen, W. P.

Deng, X.

L. Chen, Z. Cao, Q. Shen, X. Deng, F. Ou, and Y. Feng, J. Lightwave Technol. 25, 539 (2007).
[CrossRef]

F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
[CrossRef]

Fang, N.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Feng, Y.

Gilles, H.

Girard, S.

Goos, F.

F. Goos and H. Hächen, Ann. Phys. 1, 333 (1947).
[CrossRef]

Hächen, H.

F. Goos and H. Hächen, Ann. Phys. 1, 333 (1947).
[CrossRef]

Hamel, J.

Hashimoto, T.

Hesselink, L.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Lang, K. C.

H. K. Teng and K. C. Lang, Opt. Commun. 280, 16 (2007).
[CrossRef]

Li, C.

C. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

Li, H.

Liu, X.

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Liu, Z.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Myszka, D. G.

R. L. Rich and D. G. Myszka, Curr. Opin. Biotechnol. 11, 54 (2000).
[CrossRef] [PubMed]

Ou, F.

Qiao, H.

Rich, R. L.

R. L. Rich and D. G. Myszka, Curr. Opin. Biotechnol. 11, 54 (2000).
[CrossRef] [PubMed]

Shen, Q.

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, Opt. Lett. 32, 1432 (2007).
[CrossRef] [PubMed]

L. Chen, Z. Cao, Q. Shen, X. Deng, F. Ou, and Y. Feng, J. Lightwave Technol. 25, 539 (2007).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
[CrossRef]

Shi, J.

J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
[CrossRef]

Teng, H. K.

H. K. Teng and K. C. Lang, Opt. Commun. 280, 16 (2007).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Wang, Q.

C. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

Yin, X.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Yoshino, T.

Zhang, X.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Zhu, J.

J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
[CrossRef]

Zhu, P.

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Ann. Phys. (1)

F. Goos and H. Hächen, Ann. Phys. 1, 333 (1947).
[CrossRef]

Appl. Phys. Lett. (5)

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

J. Shi, Z. Cao, J. Zhu, and Q. Shen, Appl. Phys. Lett. 84, 3253 (2004).
[CrossRef]

F. Chen, Z. Cao, Q. Shen, and X. Deng, Appl. Phys. Lett. 88, 161111 (2006).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

Curr. Opin. Biotechnol. (1)

R. L. Rich and D. G. Myszka, Curr. Opin. Biotechnol. 11, 54 (2000).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

H. K. Teng and K. C. Lang, Opt. Commun. 280, 16 (2007).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E (2)

C. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental structure of an SMCOW displacement sensor. ε 1 , ε 2 , and ε 3 are dielectric constants of air, gold, and the prism, respectively; h 1 and h 2 are the thickness of the air gap and gold film on the prism. The parameters are as follows: ε 0 = 28 + 1.8 i , ε 1 = 1 , ε 2 = 28 + 1.8 i , ε 3 = 2.25 , h 0 = 400 nm , h 1 = 500 μ m , and h 2 = 18 nm .

Fig. 2
Fig. 2

Dependences of the G–H shift ( L ) and sensitivity ( S 1 ) on the effective index ( N ) .

Fig. 3
Fig. 3

Wavelength dependence of the G–H shift ( L ) for different thicknesses of the guiding layer. The structure parameters are as follows: θ = 5.56 ° and the beam waist radius is 800 μ m , h 1 = 500 μ m (solid curve), h 1 = 500 μ m + 1 nm (dashed curve).

Fig. 4
Fig. 4

Experimental arrangement for displacement sensing based on direct observation of the G–H shift.

Fig. 5
Fig. 5

Experimental sensitivity of the proposed configuration. Voltage applied on the PZT between each step is 10 V , which leads to an 8 × 10 11 m change of the air gap thickness.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = d L d h 1 = ( d L d N ) ( d N d h 1 ) = S 1 S 2 ,
S 2 = ε 1 N 2 N h 1 .

Metrics