Abstract

Based on the attenuated-total-reflection technique, a new method has been proposed to determine the second hyperpolarizability γ(ω4;ω3,ω2,ω1) of the linear conjugated polymer in the off-resonant region by means of quadratic electro-optic effect. An important feature of this method is the absence of a high-power pulse laser, resulting in more convenience and cost effectivity than other techniques.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Ramos-Ortiz, M. Cha, S. Thayumanavan, J. Mendez, S. R. Marder, and B. Kippelen, Appl. Phys. Lett. 85, 3348 (2004).
    [CrossRef]
  2. J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, J. Am. Chem. Soc. 128, 11362 (2006).
    [CrossRef] [PubMed]
  3. A. V. V. Nampoothiri, P. N. Puntambekar, B. P. Singh, R. Sachdeva, A. Sarkar, D. Saha, A. N. Suresh, and S. S. Talwar, J. Chem. Phys. 109, 685 (1998).
    [CrossRef]
  4. U. Gubler, S. Concilio, Ch. Bosshard, I. Biaggio, P. Günter, R. E. Martin, M. J. Edelmann, J. A. Wytko, and F. Diederich, Appl. Phys. Lett. 81, 2322 (2002).
    [CrossRef]
  5. D. Kuciauskas, M. J. Porsch, S. Pakalnis, K. M. Lott, and M. E. Wright, J. Phys. Chem. B 107, 1559 (2003).
    [CrossRef]
  6. W. P. Chen and J. M. Chen, J. Opt. Soc. Am. 71, 189 (1981).
    [CrossRef]
  7. M. G. Kuzyk and C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
    [CrossRef] [PubMed]
  8. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, J. Opt. Soc. Am. B 18, 187 (2001).
    [CrossRef]
  9. L. Wang, T. Wada, T. Yuba, M. Kakimoto, Y. Imai, and H. Sasabe, J. Appl. Phys. 79, 9321 (1996).
    [CrossRef]
  10. J. H. Zhou, X. X. Deng, Z. Q. Cao, Q. S. Shen, W. Wei, Z. J. Zhang, and S. X. Xie, Appl. Phys. Lett. 88, 021106 (2006).
    [CrossRef]
  11. Y. Jiang, Z. Q. Cao, Q. S. Shen, X. M. Dou, and Y. L. Chen, J. Opt. Soc. Am. B 17, 805 (2000).
    [CrossRef]

2006

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, J. Am. Chem. Soc. 128, 11362 (2006).
[CrossRef] [PubMed]

J. H. Zhou, X. X. Deng, Z. Q. Cao, Q. S. Shen, W. Wei, Z. J. Zhang, and S. X. Xie, Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

2004

G. Ramos-Ortiz, M. Cha, S. Thayumanavan, J. Mendez, S. R. Marder, and B. Kippelen, Appl. Phys. Lett. 85, 3348 (2004).
[CrossRef]

2003

D. Kuciauskas, M. J. Porsch, S. Pakalnis, K. M. Lott, and M. E. Wright, J. Phys. Chem. B 107, 1559 (2003).
[CrossRef]

2002

U. Gubler, S. Concilio, Ch. Bosshard, I. Biaggio, P. Günter, R. E. Martin, M. J. Edelmann, J. A. Wytko, and F. Diederich, Appl. Phys. Lett. 81, 2322 (2002).
[CrossRef]

2001

2000

1998

A. V. V. Nampoothiri, P. N. Puntambekar, B. P. Singh, R. Sachdeva, A. Sarkar, D. Saha, A. N. Suresh, and S. S. Talwar, J. Chem. Phys. 109, 685 (1998).
[CrossRef]

1996

L. Wang, T. Wada, T. Yuba, M. Kakimoto, Y. Imai, and H. Sasabe, J. Appl. Phys. 79, 9321 (1996).
[CrossRef]

1990

M. G. Kuzyk and C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef] [PubMed]

1981

Appl. Phys. Lett.

G. Ramos-Ortiz, M. Cha, S. Thayumanavan, J. Mendez, S. R. Marder, and B. Kippelen, Appl. Phys. Lett. 85, 3348 (2004).
[CrossRef]

U. Gubler, S. Concilio, Ch. Bosshard, I. Biaggio, P. Günter, R. E. Martin, M. J. Edelmann, J. A. Wytko, and F. Diederich, Appl. Phys. Lett. 81, 2322 (2002).
[CrossRef]

J. H. Zhou, X. X. Deng, Z. Q. Cao, Q. S. Shen, W. Wei, Z. J. Zhang, and S. X. Xie, Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

J. Am. Chem. Soc.

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, J. Am. Chem. Soc. 128, 11362 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

L. Wang, T. Wada, T. Yuba, M. Kakimoto, Y. Imai, and H. Sasabe, J. Appl. Phys. 79, 9321 (1996).
[CrossRef]

J. Chem. Phys.

A. V. V. Nampoothiri, P. N. Puntambekar, B. P. Singh, R. Sachdeva, A. Sarkar, D. Saha, A. N. Suresh, and S. S. Talwar, J. Chem. Phys. 109, 685 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Chem. B

D. Kuciauskas, M. J. Porsch, S. Pakalnis, K. M. Lott, and M. E. Wright, J. Phys. Chem. B 107, 1559 (2003).
[CrossRef]

Phys. Rev. A

M. G. Kuzyk and C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the sample.

Fig. 2
Fig. 2

Chemical structure and absorption spectrum of PF6/8.

Fig. 3
Fig. 3

Experimental ATR spectrum of TM 1 mode at 980 nm . Point A is the selected operation angle.

Fig. 4
Fig. 4

Fitted dispersion curve of γ ( ω ; 0 , 0 , ω ) and the experimental data.

Tables (1)

Tables Icon

Table 1 Experimental Refractive Indices and γ ( ω ; 0 , 0 , ω ) of PF6/8 at Different Wavelengths

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ ( ω 4 ; ω 3 , ω 2 , ω 1 ) = γ z z z z ( ω 4 ; ω 3 , ω 2 , ω 1 ) = B [ D ( ω 4 ; ω 3 , ω 2 , ω 1 ) ] ,
D ( ω 4 ; ω 3 , ω 2 , ω 1 ) = ω 10 ω 10 2 ω 4 2 [ ω 10 2 ω 1 ω 2 ( ω 10 2 ω 1 2 ) ( ω 10 2 ω 2 2 ) + ω 10 2 ω 2 ω 3 ( ω 10 2 ω 2 2 ) ( ω 10 2 ω 3 2 ) + ω 10 2 ω 3 ω 1 ( ω 10 2 ω 3 2 ) ( ω 10 2 ω 1 2 ) ] .
γ ( ω ; 0 , 0 , ω ) = B [ D ( ω ; 0 , 0 , ω ) ] ,
Δ n ( ω ) = 3 n ( ω ) χ z z z z ( 3 ) ( ω ; 0 , 0 , ω ) E 2 = 3 E 2 N f 2 ( ω ) f 2 ( 0 ) a z z 4 n ( ω ) γ ( ω ; 0 , 0 , ω ) ,
Δ n ( ω ) = n p cos θ k Δ I ,

Metrics