Abstract

All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (107esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. S. John and M. Florescu, J. Opt. A 3, S103 (2001).
    [CrossRef]
  3. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  5. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef] [PubMed]
  7. E. Ozbay, Science 311, 189 (2006).
    [CrossRef] [PubMed]
  8. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B 70, 081402 (2004).
    [CrossRef]
  9. I. I. Smolyaninov, Phys. Rev. Lett. 94, 057403 (2005).
    [CrossRef] [PubMed]
  10. G. A. Wurtz, R. Pollard, and A. V. Zayats, Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef] [PubMed]
  11. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, Opt. Express 15, 9541 (2007).
    [CrossRef] [PubMed]
  12. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, Opt. Express 15, 12368 (2007).
    [CrossRef] [PubMed]
  13. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, Opt. Lett. 23, 388 (1998).
    [CrossRef]
  14. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, Appl. Phys. Lett. 72, 1817 (1998).
    [CrossRef]
  15. G. H. Ma, W. X. Sun, S. H. Tang, H. Z. Zhang, Z. X. Shen, and S. X. Qian, Opt. Lett. 27, 1043 (2002).
    [CrossRef]
  16. W. T. Wang, Z. H. Chen, G. Yang, D. Y. Guan, G. Z. Yang, Y. L. Zhou, and H. B. Lu, Appl. Phys. Lett. 83, 1983 (2003).
    [CrossRef]
  17. Y. Hamanaka, K. Fukuta, and A. Nakamura, Appl. Phys. Lett. 84, 4938 (2004).
    [CrossRef]

2007

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

2005

I. I. Smolyaninov, Phys. Rev. Lett. 94, 057403 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

2004

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B 70, 081402 (2004).
[CrossRef]

Y. Hamanaka, K. Fukuta, and A. Nakamura, Appl. Phys. Lett. 84, 4938 (2004).
[CrossRef]

2003

W. T. Wang, Z. H. Chen, G. Yang, D. Y. Guan, G. Z. Yang, Y. L. Zhou, and H. B. Lu, Appl. Phys. Lett. 83, 1983 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002

2001

S. John and M. Florescu, J. Opt. A 3, S103 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

1998

H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, Opt. Lett. 23, 388 (1998).
[CrossRef]

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, Appl. Phys. Lett. 72, 1817 (1998).
[CrossRef]

Appl. Phys. Lett.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, Appl. Phys. Lett. 72, 1817 (1998).
[CrossRef]

W. T. Wang, Z. H. Chen, G. Yang, D. Y. Guan, G. Z. Yang, Y. L. Zhou, and H. B. Lu, Appl. Phys. Lett. 83, 1983 (2003).
[CrossRef]

Y. Hamanaka, K. Fukuta, and A. Nakamura, Appl. Phys. Lett. 84, 4938 (2004).
[CrossRef]

J. Opt. A

S. John and M. Florescu, J. Opt. A 3, S103 (2001).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev. B

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B 70, 081402 (2004).
[CrossRef]

Phys. Rev. Lett.

I. I. Smolyaninov, Phys. Rev. Lett. 94, 057403 (2005).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Science

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Other

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the subwavelength all-optical switching structure under study: p, metallic grating of period; h, metallic film thickness; w, slit width; and d, nonlinear material layer thickness. The signal and pump lights both vertically illuminate the structure from the left side.

Fig. 2
Fig. 2

Normalized far-field transmission spectra of the structure obtained with the pump light on and off. The wavelength of the pump light is 532 nm with an incident intensity of 12 MW cm 2 .

Fig. 3
Fig. 3

Dependence of signal light ( 633 nm ) transmission through the structure with an increase and decrease of the pump light ( 532 nm ) intensity.

Fig. 4
Fig. 4

Normalized transmission of signal light (black squares) dependent on time. The curve of circles denotes the pump light of a square pulse ( 12 MW cm 2 ) that switches the signal light between the low- and high-transmission states.

Fig. 5
Fig. 5

Near-field time-average distribution of electric-field intensity E 2 of signal light at situations of switching (a) off and (b) on. The longitudinal scale is one period of grating with a slit in the center. The signal light is incident from the left side.

Metrics