Abstract

The coupling, propagations, and far-field emissions of surface plasmons in a pair of Au nanowires with a dipole emitter have been investigated using the finite-difference time domain method. The surface plasmon wavelength is tunable from 650 to 380nm by adjusting the distance between the two wires, which leads to an enhancement of coupling constant and density of states of the surface plasmon. The converted energy from the dipole emitter to the propagating surface plasmon as well as the far-field emission intensity of a pair of Au nanowires increase to approximately four times as large as those of a single nanowire.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).
    [CrossRef]
  2. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).
    [CrossRef] [PubMed]
  3. H. Mabuchi and A. C. Doherty, Science 298, 1372 (2002).
    [CrossRef] [PubMed]
  4. R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
    [CrossRef] [PubMed]
  5. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).
    [CrossRef] [PubMed]
  6. A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, Phys. Rev. Lett. 92, 063601 (2004).
    [CrossRef] [PubMed]
  7. K. J. Webb and J.-H. Li, Opt. Lett. 31, 3348 (2006).
    [CrossRef] [PubMed]
  8. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  9. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
    [CrossRef]
  10. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef] [PubMed]
  12. C. Girard and R. Quidant, Opt. Express 12, 6141 (2004).
    [CrossRef] [PubMed]
  13. S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
    [CrossRef]
  14. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, Nano Lett. 6, 1822 (2006).
    [CrossRef] [PubMed]
  15. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef] [PubMed]
  16. R. M. Dickson and L. A. Lyon, J. Phys. Chem. B 104, 6095 (2000).
    [CrossRef]
  17. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Europhys. Lett. 60, 663 (2002).
    [CrossRef]
  18. M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, Nano Lett. 8, 31 (2008).
    [CrossRef]
  19. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, Nano Lett. 6, 984 (2006).
    [CrossRef]
  20. W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef] [PubMed]
  21. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, Opt. Lett. 32, 2125 (2007).
    [CrossRef] [PubMed]
  22. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef] [PubMed]
  23. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B 76, 035420 (2007).
    [CrossRef]
  24. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 402 (2007).
    [CrossRef] [PubMed]
  25. Y. Fedutik, V. V. Temnov, O. Schöps, and U. Woggon, Phys. Rev. Lett. 99, 136802 (2007).
    [CrossRef] [PubMed]
  26. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
    [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  28. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  29. V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).
    [CrossRef]
  30. S. Nie and S. R. Emory, Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  31. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
    [CrossRef]
  32. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, Nano Lett. 7, 723 (2007).
    [CrossRef] [PubMed]
  33. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999).
    [CrossRef]
  34. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Nano Lett. 5, 1569 (2005).
    [CrossRef] [PubMed]
  35. C. Oubre and P. Nordlander, J. Phys. Chem. B 109, 10042 (2005).
    [CrossRef]
  36. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, Opt. Express 15, 4253 (2007).
    [CrossRef] [PubMed]
  37. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B 71, 235420 (2005).
    [CrossRef]

2008 (1)

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, Nano Lett. 8, 31 (2008).
[CrossRef]

2007 (8)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B 76, 035420 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 402 (2007).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, and U. Woggon, Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, Nano Lett. 7, 723 (2007).
[CrossRef] [PubMed]

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, Opt. Express 15, 4253 (2007).
[CrossRef] [PubMed]

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, Opt. Lett. 32, 2125 (2007).
[CrossRef] [PubMed]

2006 (6)

K. J. Webb and J.-H. Li, Opt. Lett. 31, 3348 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, Nano Lett. 6, 1822 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, Nano Lett. 6, 984 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

2005 (4)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

C. Oubre and P. Nordlander, J. Phys. Chem. B 109, 10042 (2005).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B 71, 235420 (2005).
[CrossRef]

2004 (4)

V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).
[CrossRef]

C. Girard and R. Quidant, Opt. Express 12, 6141 (2004).
[CrossRef] [PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).
[CrossRef] [PubMed]

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, Phys. Rev. Lett. 92, 063601 (2004).
[CrossRef] [PubMed]

2002 (3)

H. Mabuchi and A. C. Doherty, Science 298, 1372 (2002).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Europhys. Lett. 60, 663 (2002).
[CrossRef]

2001 (1)

J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).
[CrossRef]

2000 (2)

R. M. Dickson and L. A. Lyon, J. Phys. Chem. B 104, 6095 (2000).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

1998 (1)

1997 (3)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
[CrossRef] [PubMed]

1992 (1)

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Appl. Phys. Lett. (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Europhys. Lett. 60, 663 (2002).
[CrossRef]

J. Phys. Chem. B (2)

R. M. Dickson and L. A. Lyon, J. Phys. Chem. B 104, 6095 (2000).
[CrossRef]

C. Oubre and P. Nordlander, J. Phys. Chem. B 109, 10042 (2005).
[CrossRef]

Nano Lett. (5)

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, Nano Lett. 7, 723 (2007).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, Nano Lett. 6, 1822 (2006).
[CrossRef] [PubMed]

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, Nano Lett. 8, 31 (2008).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, Nano Lett. 6, 984 (2006).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Nat. Phys. (1)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

Nature (4)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 402 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).
[CrossRef] [PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).
[CrossRef]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B 71, 235420 (2005).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Phys. Rev. Lett. (8)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, Phys. Rev. Lett. 92, 063601 (2004).
[CrossRef] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, and U. Woggon, Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).
[CrossRef]

Science (2)

H. Mabuchi and A. C. Doherty, Science 298, 1372 (2002).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of an emitter coupling to a single Au NW. (b) Field intensity E 2 distributions obtained at the vertical ( x z ) cross section with θ = 0 ° , and (c) θ = 90 ° , where R = 50 nm , Δ = 20 nm , and the surface of Au NW was outlined. (d) E 2 distributions along the Au NW surface with different emitter orientations. (e) Coupled energy P SP versus θ with FDTD simulation.

Fig. 2
Fig. 2

(a) Schematic of an emitter coupling to a pair of Au NWs, where α is the emission angle. (b) E 2 distributions obtained at the vertical ( x z ) cross section with emitter polarization θ = 0 ° , and (c) θ = 90 ° , where R = 50 nm , Δ = 20 nm , and the surface of Au NW was outlined. (d) E 2 distributions along Au NW surface near the emitter with θ = 0 ° , and (e) θ = 90 ° for a single (dashed curves) and a pair of NWs (solid curves). (f) λ SP as a function of Δ for N = 2 (solid circles) and N = 1 (dashed line) when θ = 90 ° . (g) P SP in one Au NW versus Δ for emitter coupling to a pair of NWs (solid circles) and a single NW (squares).

Fig. 3
Fig. 3

Amplitude distributions of the Poynting vector of the light scattered from the far end of the NWs as a function of α with Δ = 20 nm for N= (a) 1, and (b) 2. (c) Scattered intensity distributions along the vertical ( x z ) cross section plane. (d) Scattered intensity for α = 50 ° in the vertical ( x z ) cross section plane versus Δ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 2 2 J 0 ( k 2 R ) k 2 J 0 ( k 2 R ) k 1 2 H 0 ( k 1 R ) k 1 H 0 ( k 1 R ) = 0 ,
Γ SP ( p ̂ ) = Γ 0 ( 6 π ε 0 k 0 3 ε 1 ) [ Im ( p ̂ E r ( r , r ) ) p 0 ] pole ,

Metrics