Abstract

An interferometric method for parallel optical spectroscopy in the kilohertz range is reported, as well as its experimental validation in the context of high-speed laser Doppler imaging in vivo. The interferometric approach enables imaging in the low light conditions of a 2kHz frame rate recording with a complementary metal-oxide semiconductor camera. Observation of mice craniums with near-infrared (λ=785nm) laser light in reflection configuration is reported. Doppler spectral images allegedly sensitive to blood flow are sequentially measured at several optical frequency detunings, to shift the spectral range of analysis in the radio-frequency spectrum.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Lohwasser and G. Soelkner, Appl. Opt. 38, 2128 (1999).
    [CrossRef]
  2. Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
    [CrossRef]
  3. M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, Am. J. Physiol. 232, H441 (1977).
    [PubMed]
  4. A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
    [CrossRef]
  5. J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
    [CrossRef]
  6. A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
    [CrossRef] [PubMed]
  7. T. J. H. Essex and P. O. Byrne, J. Biomed. Eng. 13, 189 (1991).
    [CrossRef] [PubMed]
  8. A. Serov, W. Steenbergen, and F. de Mul, Opt. Lett. 27, 300 (2002).
    [CrossRef]
  9. M. Atlan, M. Gross, T. Vitalis, A. Rancillac, B. C. Forget, and A. K. Dunn, Opt. Lett. 31, 2762 (2006).
    [CrossRef] [PubMed]
  10. M. Atlan and M. Gross, Appl. Phys. Lett. 91, 113510 (2007).
    [CrossRef]
  11. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, Appl. Opt. 31, 6535 (1992).
    [CrossRef] [PubMed]
  12. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
    [CrossRef]

2007 (1)

M. Atlan and M. Gross, Appl. Phys. Lett. 91, 113510 (2007).
[CrossRef]

2006 (1)

2002 (1)

2001 (1)

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1996 (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

1992 (1)

1991 (1)

T. J. H. Essex and P. O. Byrne, J. Biomed. Eng. 13, 189 (1991).
[CrossRef] [PubMed]

1981 (1)

A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
[CrossRef]

1977 (1)

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, Am. J. Physiol. 232, H441 (1977).
[PubMed]

1964 (1)

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Am. J. Physiol. (1)

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, Am. J. Physiol. 232, H441 (1977).
[PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

M. Atlan and M. Gross, Appl. Phys. Lett. 91, 113510 (2007).
[CrossRef]

J. Biomed. Eng. (1)

T. J. H. Essex and P. O. Byrne, J. Biomed. Eng. 13, 189 (1991).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental scheme. Acronyms are defined in text. (b) White-light picture of the animal preparation.

Fig. 2
Fig. 2

(a)–(c) Spectra and (d)–(l) image components of the cranium area, in logarithm. scale. Spectra (circles and squares, respectively) are measured in the regions of interest 1 and 2, sketched in (d). Columns display results obtained at three optical frequency shifts: (a), (d), (g), (j) Δ ω AOM = 0 Hz ; (b), (e), (h), (k) Δ ω AOM = 1000 Hz ; (c), (f), (i), (l) Δ ω AOM = 3000 Hz . Rows show images of three Fourier sidebands of the spectrum [displayed in gray in (a)–(c)]: (d)–(f) ω 1 = 450 Hz , (g)–(i) ω 2 = 0 Hz , (j)–(l) ω 3 = + 450 Hz .

Fig. 3
Fig. 3

Spectral images in logarithm scale averaged in the + 100 to + 500 Hz frequency band at three different optical shifts: (a), (d), (g) Δ ω AOM = 0 Hz ; (b), (e), (h) Δ ω AOM = 1000 Hz ; (c), (f), (i) Δ ω AOM = 3000 Hz . Temporal resolution varies from (a)–(c) 10 to (g)–(i) 640 ms .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z , t ) = E ( x , y , z , t ) e i ω L t e i ω AOM 1 t ,
E LO ( x , y , z , t ) = E LO e i ω L t e i ω AOM 2 t e i ( k 0 x x + k 0 y y ) ,
I = E ( x , y , z 0 , t ) 2 + E LO 2 + E ( x , y , z 0 , t ) E LO * e i ( Δ ω AOM t + k 0 x x + k 0 y y ) + E * ( x , y , z 0 , t ) E LO e + i ( Δ ω AOM t + k 0 x x + k 0 y y ) ,
H ( x , y , t ) = I ( x , y , t ) * 1 i λ Δ z e i k Δ z e i ( k 2 Δ z ) ( x 2 + y 2 ) ,
H + 1 ( x , y , t ) E ( x x 0 , y y 0 , z 1 , t ) e i Δ ω AOM t ,
H ̃ + 1 ( x , y , ω ) E ̃ ( x x 0 , y y 0 , z 1 , ω Δ ω AOM ) .

Metrics