Abstract

We propose a method for designing an improved phase-only Talbot array illuminator, called a phase contrast Talbot array illuminator (PCTAI), which could be used to generate an array of spots with a special intensity structure and high efficiency. As examples, we designed two types of PCTAIs for generating an array of line and hollow spots, respectively. Some experimental results revealing the phase contrast effect and demonstrating the feasibility of the PCTAIs are also given.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. W. Lohmann and J. A. Thomas, Appl. Opt. 29, 4337 (1990).
    [CrossRef] [PubMed]
  2. Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, Appl. Phys. Lett. 90, 031107 (2007).
    [CrossRef]
  3. Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, Appl. Phys. Lett. 91, 051101 (2007).
    [CrossRef]
  4. C. S. Guo, X. Yin, L. W. Zhu, and Z. P. Hong, Opt. Lett. 32, 2079 (2007).
    [CrossRef] [PubMed]
  5. L. W. Zhu, X. Yin, Z. P. Hong, and C. S. Guo, J. Opt. Soc. Am. A 25, 203 (2008).
    [CrossRef]
  6. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [CrossRef]

2008 (1)

2007 (3)

C. S. Guo, X. Yin, L. W. Zhu, and Z. P. Hong, Opt. Lett. 32, 2079 (2007).
[CrossRef] [PubMed]

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

1998 (1)

1990 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Example of (a) conventional TAI for a square array designed according to Eq. (2) with a fractional parameter of β = 8 and (b) its reconstructed intensity distribution at the fractional Talbot distance.

Fig. 2
Fig. 2

(a) Phase configuration of the unit cell for generating an array of line spots, (b) corresponding PCTAI of a square array when the width of the central rectangle is equal to 6   pixels , (c) reconstructed line spot array (only four neighboring unit spots are shown) of the PCTAI shown in (b), and (d) reconstructed spot array when the width of the central rectangle of the unit cell is changed into 2   pixels .

Fig. 3
Fig. 3

(a) Phase configuration of the unit cell for generating an array of rectanglar hollow spots. (b) PCTAIs designed according to the phase configuration of the unit cell shown in (a); the side length of the smaller square is equal to 10   pixels . (c) Array of spots reconstructed by the PCTAI shown in (b) and (d) reconstructed array of spots when the side length of the smaller square is reduced to 6   pixels .

Fig. 4
Fig. 4

Curve of the central peak intensity of the reconstructed spots shown in Fig. 3d versus the defocused distance.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U ( r ) = u 0 ( r ) lattice ( r , R n ) ,
U β = u 0 ( r ) [ c ( r ) lattice ( r , R n β ) ] ,
c ( r ) = A ( n 1 , n 2 , β ) exp { j ϕ ( n 1 , n 2 , β ) } .
A ( n 1 , n 2 , β ) = { 1 , for odd β 1 , for even β , even β 2 , n 1 and n 2 1 , for even β , odd β 2 , n 1 and n 2 0 , for even β , others } ,
ϕ ( n 1 , n 2 , β ) = π 2 ( 1 β α ) ( n 1 2 + n 2 2 ) ,
u ( r ) = { exp { j ϕ ( r ) } , x 2 a β , y 2 a β 0 , others } ,
I ( r ) = I 0 Fr Δ z { u 0 ( r ) } 2 lattice ( r , R n ) ,

Metrics