Abstract

We present an all-fiber interferometer fabricated with a single piece of an endless single-mode photonic crystal fiber (PCF) by an electric arc discharge. By forming a long period grating (LPG) at a point and collapsing the air holes at another point along the PCF, the simple but effective interferometer could be implemented. The LPG made a strong wavelength selective mode coupling between the core and cladding modes in the interesting wavelength range, while the air-hole collapse induced wavelength independent mode couplings. By cascading them, we could implement the all-fiber interferometer. As a potential application of the proposed all PCF interferometer, strain sensing is experimentally demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  3. J. Kim, G.-J. Kong, U.-C. Pack, K. S. Lee, and B. H. Lee, Trans. Electron. E88-C, 920 (2005).
  4. Y. Zhu, P. Shum, H.-J. Chong, M. K. Rao, and C. Lu, Opt. Express 11, 1900 (2003).
    [CrossRef] [PubMed]
  5. H. Dobb, K. Kalli, and D. J. Webb, Electron. Lett. 40, 657 (2004).
    [CrossRef]
  6. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
    [CrossRef] [PubMed]
  7. K. Morishita and Y. Miyake, J. Lightwave Technol. 22, 625 (2004).
    [CrossRef]
  8. B. H. Lee and J. Nishii, Appl. Opt. 38, 3450 (1999).
    [CrossRef]
  9. Y.-G. Han, S. B. Lee, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, Opt. Express 11, 476 (2003).
    [CrossRef] [PubMed]
  10. Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, Opt. Lett. 30, 367 (2005).
    [CrossRef] [PubMed]
  11. B. H. Lee and J. Nishii, Opt. Lett. 23, 1624 (1998).
    [CrossRef]

2005

J. Kim, G.-J. Kong, U.-C. Pack, K. S. Lee, and B. H. Lee, Trans. Electron. E88-C, 920 (2005).

Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, Opt. Lett. 30, 367 (2005).
[CrossRef] [PubMed]

2004

2003

1999

1998

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

B. H. Lee and J. Nishii, Opt. Lett. 23, 1624 (1998).
[CrossRef]

1996

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission spectra of the PCF-LPGs having a grating period of 490 μ m and 15–17 grating elements. The resonant peak grows with the number of elements. The maximum coupling was 25 dB for the 17 grating elements.

Fig. 2
Fig. 2

Cross-sectional view of the PCF (a) before and (c) after arc discharge and (b) its side view. The air holes in the cladding region of the PCF were fully collapsed with the arc discharge.

Fig. 3
Fig. 3

Schematic of the all-PCF interferometer composed of an LPG and air-hole collapsing in a single piece of PCF.

Fig. 4
Fig. 4

Transmission spectra of an LPG having a 480 μ m period (dashed curve) and the proposed interferometer (solid curve). Interference fringes are well developed.

Fig. 5
Fig. 5

(a) Transmission spectra of the interferometer measured at 0 and 2200 μ ε strain. (b) Strain response of the interference peak centered at 1.314 μ m . The interference fringe was blueshifted with the strain having a sensitivity of 1.8 pm μ ε .

Metrics