Abstract

We experimentally demonstrate the generation and characterization of polarization-shaped femtosecond laser pulses in the ultraviolet at a central wavelength of 400nm. Near-infrared laser pulses are first polarization shaped and then frequency doubled in an interferometrically stable setup that employs two perpendicularly oriented nonlinear crystals. A new pulse shaper design involving volume phase holographic gratings reduces losses and hence leads to an increase in pulse energy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007).
    [CrossRef] [PubMed]
  2. M. Bergt, T. Brixner, B. Kiefer, M. Strehle, and G. Gerber, J. Phys. Chem. A 103, 10381 (1999).
    [CrossRef]
  3. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).
  4. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
    [CrossRef]
  5. C. Schriever, S. Lochbrunner, M. Optiz, and E. Riedle, Opt. Lett. 31, 543 (2006).
    [CrossRef] [PubMed]
  6. G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, Phys. Rev. A 74, 033413 (2006).
    [CrossRef]
  7. P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, Appl. Phys. B 88, 519 (2007).
    [CrossRef]
  8. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
  9. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
    [CrossRef]
  10. B. J. Pearson and T. C. Weinacht, Opt. Express 15, 4385 (2007).
    [CrossRef] [PubMed]
  11. S. Coudreau, D. Kaplan, and P. Tournois, Opt. Lett. 31, 1899 (2006).
    [CrossRef] [PubMed]
  12. T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
    [CrossRef]
  13. L. Polachek, D. Oron, and Y. Silberberg, Opt. Lett. 31, 631 (2006).
    [CrossRef] [PubMed]
  14. M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, Appl. Phys. B 86, 259 (2007).
    [CrossRef]
  15. M. Ninck, A. Galler, T. Feurer, and T. Brixner, Opt. Lett. 32, 3379 (2007).
    [CrossRef] [PubMed]
  16. J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, Opt. Lett. 19, 1550 (1994).
    [CrossRef] [PubMed]
  17. I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, Publ. Astron. Soc. Pac. 116, 403 (2004).
    [CrossRef]
  18. K. Kato, IEEE J. Quantum Electron. 22, 1013 (1986).
    [CrossRef]
  19. R. Trebino, Frequency-Resolved Optical Gating (Kluwer, 2000).
  20. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, Phys. Rev. Lett. 92, 208301 (2004).
    [CrossRef] [PubMed]
  21. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Nature 446, 301 (2007).
    [CrossRef] [PubMed]

2007 (6)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, Appl. Phys. B 88, 519 (2007).
[CrossRef]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, Appl. Phys. B 86, 259 (2007).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Nature 446, 301 (2007).
[CrossRef] [PubMed]

B. J. Pearson and T. C. Weinacht, Opt. Express 15, 4385 (2007).
[CrossRef] [PubMed]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, Opt. Lett. 32, 3379 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (1)

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

2004 (2)

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, Publ. Astron. Soc. Pac. 116, 403 (2004).
[CrossRef]

2003 (1)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

2001 (3)

1999 (1)

M. Bergt, T. Brixner, B. Kiefer, M. Strehle, and G. Gerber, J. Phys. Chem. A 103, 10381 (1999).
[CrossRef]

1994 (1)

1986 (1)

K. Kato, IEEE J. Quantum Electron. 22, 1013 (1986).
[CrossRef]

Appl. Phys. B (5)

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, Appl. Phys. B 88, 519 (2007).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, Appl. Phys. B 86, 259 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, IEEE J. Quantum Electron. 22, 1013 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

M. Bergt, T. Brixner, B. Kiefer, M. Strehle, and G. Gerber, J. Phys. Chem. A 103, 10381 (1999).
[CrossRef]

Nature (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Nature 446, 301 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (1)

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, Phys. Rev. A 74, 033413 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Publ. Astron. Soc. Pac. (1)

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, Publ. Astron. Soc. Pac. 116, 403 (2004).
[CrossRef]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating (Kluwer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Setup for the generation and characterization of polarization-shaped UV pulses. The polarization-shaped NIR pulse is frequency doubled in two BBO crystals and combined with the frequency-doubled reference pulse. The beam is then decomposed into two orthogonal polarization components that are separately analyzed with a spectrometer. The reference pulse passes over a delay stage to adjust the temporal delay between shaped pulse and reference pulse. The reference pulse is characterized in FROG and XFROG measurements. (b) Sketch illustrating frequency doubling of polarization-shaped NIR pulses (propagating along the k direction): one component of the fundamental is doubled in the first, the other component in the second crystal (optical axis indicated by arrow a).

Fig. 2
Fig. 2

Polarization-shaped UV double pulse: (a) spectral and (b) temporal intensity, (c) quasi-3D plot.

Fig. 3
Fig. 3

Polarization-shaped UV pulse train: (a) spectral and (b) temporal intensity, (c) quasi-3D plot.

Metrics