Abstract

We present a technique for simultaneous acquisition of time-resolved fluorescence spectra using a customized optical fiber bundle with multiple collection fibers of different length. These fibers were aligned at the output plane of a spectrograph corresponding to different wavelengths. Fluorescence signal dispersed by the spectrograph was converted into a pulse train owing to time delays introduced by the length differences between each fiber and subsequently detected by a photomultiplier and digitizer. The performance of the technique was tested with standard fluorescent dyes, and the results are in good agreement with literature values.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Richards-Kortum and E. Sevick-Muraca, Annu. Rev. Phys. Chem. 47, 555 (1996).
    [CrossRef] [PubMed]
  2. R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, J. Phys. D 35, R61 (2002).
    [CrossRef]
  3. W. H. Yong, P. V. Butte, B. K. Pikul, J. A. Jo, Q. Y. Fang, T. Papaioannou, K. L. Black, and L. Marcu, Front. Biosci. 11, 1255 (2006).
    [CrossRef]
  4. Q. Y. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
    [CrossRef]
  5. P. Urayama, J. A. Beamish, F. K. Minn, E. A. Hamon, and M. A. Mycek, Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper CTh602.
  6. P. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, Appl. Phys. B 76, 483 (2003).
  7. D. S. Elson, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Lever, P. M. W. French, K. Lauritsen, M. Wahl, and R. Erdmann, Opt. Lett. 27, 1409 (2002).
    [CrossRef]
  8. J. A. Russell, K. R. Diamond, T. J. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, IEEE J. Sel. Top. Quantum Electron. 14, 158 (2008).
    [CrossRef]

2008 (1)

J. A. Russell, K. R. Diamond, T. J. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, IEEE J. Sel. Top. Quantum Electron. 14, 158 (2008).
[CrossRef]

2006 (1)

W. H. Yong, P. V. Butte, B. K. Pikul, J. A. Jo, Q. Y. Fang, T. Papaioannou, K. L. Black, and L. Marcu, Front. Biosci. 11, 1255 (2006).
[CrossRef]

2004 (1)

Q. Y. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

2003 (1)

P. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, Appl. Phys. B 76, 483 (2003).

2002 (2)

1996 (1)

R. Richards-Kortum and E. Sevick-Muraca, Annu. Rev. Phys. Chem. 47, 555 (1996).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, Annu. Rev. Phys. Chem. 47, 555 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (1)

P. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, Appl. Phys. B 76, 483 (2003).

Front. Biosci. (1)

W. H. Yong, P. V. Butte, B. K. Pikul, J. A. Jo, Q. Y. Fang, T. Papaioannou, K. L. Black, and L. Marcu, Front. Biosci. 11, 1255 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Russell, K. R. Diamond, T. J. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, IEEE J. Sel. Top. Quantum Electron. 14, 158 (2008).
[CrossRef]

J. Phys. D (1)

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, J. Phys. D 35, R61 (2002).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

Q. Y. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Other (1)

P. Urayama, J. A. Beamish, F. K. Minn, E. A. Hamon, and M. A. Mycek, Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper CTh602.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Instrumental setup for a multiple delay optical fiber bundle-based spectrometer.

Fig. 2
Fig. 2

Paper fluorescence decays at five different emission wavelengths (solid lower curve) and its steady-state spectrum (dashed upper curve) measured by a spectrometer.

Fig. 3
Fig. 3

Fluorescence decays of the fluorescence dye solutions at different emission wavelengths. A, Upper panel, normalized steady-state spectra of fluorescein (solid curve) and 9-CA (dashed curve) measured by a spectrometer and normalized time-integrated intensities of the decay pulses at different wavelengths for fluorescein (asterisks) and 9-CA (circles); lower panel decay pulses of the fluorescein and 9-CA at different wavelengths. B, Decay pulses of the mixture solution at different wavelengths (solid lower curve) and normalized steady-state spectrum of the mixture solution (dashed upper curve).

Tables (2)

Tables Icon

Table 1 Time Delays between Two Adjacent Optical Fibers

Tables Icon

Table 2 Lifetimes a (ns) of the Decay Pulses of the Three Solutions

Metrics