Abstract

We develop rapid chemical-vapor sensors based on optofluidic ring resonators (OFRRs). The OFRR is a glass capillary whose circular wall supports the circulating waveguide modes (WGMs). The OFRR inner surface is coated with a vapor-sensitive polymer. The analyte and polymer interaction causes the polymer refractive index to change, which is detected as a WGM spectral shift. Owing to the excellent fluidics, the OFRR exhibits subsecond detection and recovery time with a flow rate of only 1mLmin, a few orders of magnitude lower than that in the existing optical vapor sensors. The detection limit is estimated to be 5.6×106 refractive index units, over ten times better than other ring-resonator vapor sensors. Ethanol and hexane vapors are used as a model system, and chemical differentiation is demonstrated with different polymer coatings.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, Opt. Lett. 32, 2523 (2007).
    [CrossRef] [PubMed]
  2. H. Xiao, J. Zhang, J. Dong, M. Luo, R. Lee, and V. Romero, Opt. Lett. 30, 1270 (2005).
    [CrossRef] [PubMed]
  3. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, J. Lightwave Technol. 24, 1776 (2006).
    [CrossRef]
  4. N. M. Aguirre, L. M. Pérez, J. A. Colín, and E. Buenrostro-Gonzalez, Sensors 7, 1954 (2007).
    [CrossRef]
  5. J. D. Gordon, T. L. Lowder, R. H. Selfridge, and S. M. Schultz, Appl. Opt. 46, 7805 (2007).
    [CrossRef] [PubMed]
  6. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
    [CrossRef]
  7. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
    [CrossRef]
  8. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  9. A. Ksendzov, M. L. Homer, and A. M. Manfreda, Electron. Lett. 40, 63 (2004).
    [CrossRef]
  10. F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, Sens. Actuators B 120, 610 (2007).
    [CrossRef]
  11. V. M. N. Passaro, F. Dell'Olio, and F. D. Leonardis, Sensors 7, 2741 (2007).
    [CrossRef]
  12. S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, Anal. Chem. 80, 2232 (2008).
    [CrossRef] [PubMed]
  13. S. Reidy, G. Lambertus, J. Reece, and R. Sacks, Anal. Chem. 78, 2623 (2006).
    [CrossRef] [PubMed]
  14. I. M. White, H. Oveys, and X. Fan, Opt. Lett. 31, 1319 (2006).
    [CrossRef] [PubMed]
  15. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]

2008 (1)

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, Anal. Chem. 80, 2232 (2008).
[CrossRef] [PubMed]

2007 (5)

N. M. Aguirre, L. M. Pérez, J. A. Colín, and E. Buenrostro-Gonzalez, Sensors 7, 1954 (2007).
[CrossRef]

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, Sens. Actuators B 120, 610 (2007).
[CrossRef]

V. M. N. Passaro, F. Dell'Olio, and F. D. Leonardis, Sensors 7, 2741 (2007).
[CrossRef]

T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, Opt. Lett. 32, 2523 (2007).
[CrossRef] [PubMed]

J. D. Gordon, T. L. Lowder, R. H. Selfridge, and S. M. Schultz, Appl. Opt. 46, 7805 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (2)

H. Xiao, J. Zhang, J. Dong, M. Luo, R. Lee, and V. Romero, Opt. Lett. 30, 1270 (2005).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

2004 (1)

A. Ksendzov, M. L. Homer, and A. M. Manfreda, Electron. Lett. 40, 63 (2004).
[CrossRef]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Anal. Chem. (2)

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, Anal. Chem. 80, 2232 (2008).
[CrossRef] [PubMed]

S. Reidy, G. Lambertus, J. Reece, and R. Sacks, Anal. Chem. 78, 2623 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Electron. Lett. (1)

A. Ksendzov, M. L. Homer, and A. M. Manfreda, Electron. Lett. 40, 63 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (3)

Sens. Actuators B (1)

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, Sens. Actuators B 120, 610 (2007).
[CrossRef]

Sensors (2)

V. M. N. Passaro, F. Dell'Olio, and F. D. Leonardis, Sensors 7, 2741 (2007).
[CrossRef]

N. M. Aguirre, L. M. Pérez, J. A. Colín, and E. Buenrostro-Gonzalez, Sensors 7, 1954 (2007).
[CrossRef]

Other (1)

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Left) experimental setup; (right) cross-section view of the OFRR vapor sensor.

Fig. 2
Fig. 2

OFRR response to various concentrations of ethanol and hexane vapors. The OFRR is coated with a 200 - nm -thick OV-17 (A) and PEG-400 (B). Insets are the sensorgrams taken by monitoring the WGM shift in real time.

Fig. 3
Fig. 3

Rapid detection of (A) ethanol vapor and (B) hexane vapor when the analyte is injected in a pulsed manner.

Fig. 4
Fig. 4

Sensitivity and fraction of light in polymer versus polymer thickness. Inset (A), WGM (TE-mode) radial distribution when polymer thickness is 500 nm . Dashed lines indicate the OFRR interior and exterior surface. The shaded area represents the polymer layer. Inset (B), the corresponding WGM spectral shift as a function of the RI change in the polymer layer. OFRR outer diameter = 75 μ m , OFRR wall thickness = 4 μ m , core RI = 1.0 , polymer RI = 1.465 , capillary RI = 1.45 , and outside RI = 1.0 . The WGM resonant wavelength is centered around 1550 nm .

Metrics