Abstract

A reflective, binary phase reflectarray is demonstrated in the infrared, at a wavelength of 10.6μm. The unique aspect of this work, at this frequency band, is that the specific desired phase shift is achieved using an array of subwavelength metallic patches on top of a ground-plane-backed dielectric stand-off layer. This is an alternative to the usual method of constructing a reflective Fresnel zone plate by means of a given thickness of dielectric. This initial demonstration of the reflectarray approach at infrared is significant in that there is inherent flexibility to create a range of phase shifts by varying the dimensions of the patches. This will allow for a multilevel phase distribution, or even a continuous variation of phase, across an optical surface with only two-dimensional lithography, avoiding the need for dielectric height variations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Wiltse, in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), p. 722.
  2. G. Z. Jiang and W. X. Zhang, Electromagnetics 19, 385 (1999).
    [CrossRef]
  3. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000).
  4. J. Alda, J. Rico-García, J. López-Alonso, B. Lail, and G. Boreman, Opt. Commun. 260, 454 (2006).
    [CrossRef]
  5. D. Berry, R. Malech, and W. Kennedy, IEEE Trans. Antennas Propag. 11, 645 (1963).
    [CrossRef]
  6. D. M. Pozar, S. D. Targonski, and H. D. Syrigos, IEEE Trans. Antennas Propag. 45, 287 (1997).
    [CrossRef]
  7. F. Tsai and M. Bialkowski, IEEE Trans. Antennas Propag. 51, 2953 (2003).
    [CrossRef]
  8. J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
    [CrossRef]
  9. D. Cadoret, A. Laisne, and R. Gillard, Microwave Opt. Technol. Lett. 44, 270 (2005).
    [CrossRef]
  10. J. Huang, in Antenna Engineering Handbook, J.Volakis, ed. (McGraw Hill, 2007), p. 1.
  11. J. Ginn, D. Shelton, J. Tharp, B. Lail, and G. Boreman, in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 4549.

2007

J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

2006

J. Alda, J. Rico-García, J. López-Alonso, B. Lail, and G. Boreman, Opt. Commun. 260, 454 (2006).
[CrossRef]

2005

D. Cadoret, A. Laisne, and R. Gillard, Microwave Opt. Technol. Lett. 44, 270 (2005).
[CrossRef]

2003

F. Tsai and M. Bialkowski, IEEE Trans. Antennas Propag. 51, 2953 (2003).
[CrossRef]

1999

G. Z. Jiang and W. X. Zhang, Electromagnetics 19, 385 (1999).
[CrossRef]

1997

D. M. Pozar, S. D. Targonski, and H. D. Syrigos, IEEE Trans. Antennas Propag. 45, 287 (1997).
[CrossRef]

1963

D. Berry, R. Malech, and W. Kennedy, IEEE Trans. Antennas Propag. 11, 645 (1963).
[CrossRef]

Electromagnetics

G. Z. Jiang and W. X. Zhang, Electromagnetics 19, 385 (1999).
[CrossRef]

IEEE Trans. Antennas Propag.

D. Berry, R. Malech, and W. Kennedy, IEEE Trans. Antennas Propag. 11, 645 (1963).
[CrossRef]

D. M. Pozar, S. D. Targonski, and H. D. Syrigos, IEEE Trans. Antennas Propag. 45, 287 (1997).
[CrossRef]

F. Tsai and M. Bialkowski, IEEE Trans. Antennas Propag. 51, 2953 (2003).
[CrossRef]

J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

Microwave Opt. Technol. Lett.

D. Cadoret, A. Laisne, and R. Gillard, Microwave Opt. Technol. Lett. 44, 270 (2005).
[CrossRef]

Opt. Commun.

J. Alda, J. Rico-García, J. López-Alonso, B. Lail, and G. Boreman, Opt. Commun. 260, 454 (2006).
[CrossRef]

Other

J. C. Wiltse, in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), p. 722.

H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000).

J. Huang, in Antenna Engineering Handbook, J.Volakis, ed. (McGraw Hill, 2007), p. 1.

J. Ginn, D. Shelton, J. Tharp, B. Lail, and G. Boreman, in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 4549.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Modeled phase variation upon reflection for reflectarray elements versus patch dimensions at 10.6 μ m . Each line represents a different stand-off layer height.

Fig. 2
Fig. 2

Modeled power reflectivity for reflectarray elements versus patch dimensions at 10.6 μ m . Each line represents a different stand-off layer height.

Fig. 3
Fig. 3

Visible microscope image of reflectarray rings with (a) layout schematic and (b) patch elements in the rings.

Fig. 4
Fig. 4

Reflected beam profiles of reflectarray at (a) optimal focus and (b) reflectarray outside of optimal focus.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = D 4 λ f - number ,
r n = n λ f ,

Metrics