Abstract

A configuration for linear cavity Brillouin fiber laser (BFL) generation is demonstrated using a standard single-mode fiber, two optical circulators, a 3dB coupler, and a 95/5 coupler to allow high efficiency. With a Brillouin pump (BP) power of 13dBm, the laser peak power is 12.3dB higher than a conventional linear cavity BFL at an upshifted wavelength of 0.086nm from the BP wavelength. In addition, it is revealed that the BFL peak power can be higher than the transmitted BP peak power when the BP power exceeds the second Brillouin Stokes threshold power.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. T. Kurashima, T. Horiguchi, and M. Tateda, Opt. Lett. 15, 1038 (1990).
    [CrossRef] [PubMed]
  3. Y. Tanaka and K. Hotate, J. Lightwave Technol. 15, 838 (1997).
    [CrossRef]
  4. S. P. Smith, F. Zarinetchi, and S. Ezekiel, Opt. Lett. 16, 393 (1991).
    [CrossRef] [PubMed]
  5. J. Boschung, L. Thevenas, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
    [CrossRef]
  6. M. R. Shirazi, S. W. Harun, M. Biglary, K. Thambiratnam, and H. Ahmad, ISAST Trans. Elec. Signal Proc. 1, 30 (2007).
  7. V. Lecoeuche, P. Niay, M. Douay, P. Bernage, S. Randoux, and J. Zemmouri, Opt. Commun. 177, 303 (2000).
    [CrossRef]
  8. H. Ahmad, M. R. Shirazi, M. Biglary, and S. W. Harun, Microwave Opt. Technol. Lett. 50, 265 (2008).
    [CrossRef]
  9. S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, Phys. Rev. A 52, 2327 (1995).
    [CrossRef] [PubMed]

2008 (1)

H. Ahmad, M. R. Shirazi, M. Biglary, and S. W. Harun, Microwave Opt. Technol. Lett. 50, 265 (2008).
[CrossRef]

2007 (1)

M. R. Shirazi, S. W. Harun, M. Biglary, K. Thambiratnam, and H. Ahmad, ISAST Trans. Elec. Signal Proc. 1, 30 (2007).

2000 (1)

V. Lecoeuche, P. Niay, M. Douay, P. Bernage, S. Randoux, and J. Zemmouri, Opt. Commun. 177, 303 (2000).
[CrossRef]

1997 (1)

Y. Tanaka and K. Hotate, J. Lightwave Technol. 15, 838 (1997).
[CrossRef]

1995 (1)

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, Phys. Rev. A 52, 2327 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Boschung, L. Thevenas, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

1991 (1)

1990 (1)

Electron. Lett. (1)

J. Boschung, L. Thevenas, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

ISAST Trans. Elec. Signal Proc. (1)

M. R. Shirazi, S. W. Harun, M. Biglary, K. Thambiratnam, and H. Ahmad, ISAST Trans. Elec. Signal Proc. 1, 30 (2007).

J. Lightwave Technol. (1)

Y. Tanaka and K. Hotate, J. Lightwave Technol. 15, 838 (1997).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

H. Ahmad, M. R. Shirazi, M. Biglary, and S. W. Harun, Microwave Opt. Technol. Lett. 50, 265 (2008).
[CrossRef]

Opt. Commun. (1)

V. Lecoeuche, P. Niay, M. Douay, P. Bernage, S. Randoux, and J. Zemmouri, Opt. Commun. 177, 303 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, Phys. Rev. A 52, 2327 (1995).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for (a) proposed and (b) conventional linear cavity configurations.

Fig. 2
Fig. 2

BFL output spectra for different configurations at a BP power of 13 dBm .

Fig. 3
Fig. 3

SBS and the transmitted output BP peak powers against input BP peak power for both conventional (C) and proposed (P) configurations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d I P ( z ) d z = g B I P ( z ) I S 1 ( z ) α I P ( z ) ,
d I S 1 ( z ) d z = g B [ I P ( z ) I S 1 ( z ) I S 1 ( z ) I S 2 ( z ) ] + α I S 1 ( z ) ,
d I S 2 ( z ) d z = g B I S 1 ( z ) I S 2 ( z ) α I S 2 ( z ) ,
I P ( 0 ) = I 0 ( 1 R 1 ) + R 1 I P R ( 0 ) ,
I P R ( L ) = R 2 I P ( L ) ,
I S 1 R ( 0 ) = R 1 I S 1 ( 0 ) ,
I S 1 ( L ) = R 2 I S 1 R ( L ) ,
I S 2 ( 0 ) = R 1 I S 2 R ( 0 ) ,
I S 2 R ( L ) = R 2 I S 2 ( L ) ,

Metrics