Abstract

We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As2S3 films. The device simultaneously features a small footprint of 0.012mm×0.012mm, a cavity Q (quality factor) of 10,000, and an extinction ratio of 32dB. These resonators exhibit a very high sensitivity to refractive index changes with a demonstrated detection capability of ΔnAs2S3=(4.5×106±10%) refractive index unit. The resonators were applied to derive a photorefractive response of As2S3 to λ=550nm light. The resonator devices are a versatile platform for both sensing and glass material property investigation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef] [PubMed]
  2. J. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, Appl. Phys. Lett. 86, 264101 (2005).
    [CrossRef]
  3. Q. Xu, V. Almeida, and M. Lipson, Opt. Lett. 30, 2733 (2005).
    [CrossRef] [PubMed]
  4. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Opt. Express 15, 7610 (2007).
    [CrossRef] [PubMed]
  5. A. Greer and N. Nathur, Nature 437, 1246 (2005).
    [CrossRef] [PubMed]
  6. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. Miller, J. Appl. Phys. 98, 053503 (2005).
    [CrossRef]
  7. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, Opt. Express 15, 2307 (2007).
    [CrossRef] [PubMed]
  8. J. Hu, V. Tarasov, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, Opt. Express 15, 11798 (2007).
    [CrossRef] [PubMed]
  9. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, to be presented at the Integrated Photonics and Nanophotonics Research and Applications 2008 Meeting, Boston, Mass., July 13-16, 2008.
  10. J. Hu, N. Feng, N. Carlie, J. Wang, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, Opt. Express 15, 14566 (2007).
    [CrossRef] [PubMed]
  11. Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, Appl. Phys. Lett. 90, 071102 (2007).
    [CrossRef]
  12. R. Boyd and J. Heebner, Appl. Opt. 40, 5742 (2001).
    [CrossRef]
  13. J. Laniel, J. Ménarda, K. Turcotte, A. Villeneuve, R. Vallée, C. Lopez, and K. Richardson, J. Non-Cryst. Solids 328, 183 (2003).
    [CrossRef]
  14. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallée, Opt. Lett. 29, 748 (2004).
    [CrossRef] [PubMed]
  15. C. Lopez, Ph.D dissertation (University of Central Florida, 2004).
  16. A. van Popta, R. DeCorby, C. Haugen, T. Robinson, J. McMullin, D. Tonchev, and S. Kasap, Opt. Express 10, 639 (2002).
    [PubMed]
  17. M. Lee, C. Grillet, C. Smith, D. Moss, B. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, Opt. Express 15, 1277 (2007).
    [CrossRef] [PubMed]
  18. H. Fritzsche, Semiconductors 32, 850 (1998).
    [CrossRef]

2007 (6)

2005 (4)

Q. Xu, V. Almeida, and M. Lipson, Opt. Lett. 30, 2733 (2005).
[CrossRef] [PubMed]

J. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

A. Greer and N. Nathur, Nature 437, 1246 (2005).
[CrossRef] [PubMed]

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. Miller, J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

2004 (2)

2003 (1)

J. Laniel, J. Ménarda, K. Turcotte, A. Villeneuve, R. Vallée, C. Lopez, and K. Richardson, J. Non-Cryst. Solids 328, 183 (2003).
[CrossRef]

2002 (1)

2001 (1)

1998 (1)

H. Fritzsche, Semiconductors 32, 850 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

J. Appl. Phys. (1)

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. Miller, J. Appl. Phys. 98, 053503 (2005).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Laniel, J. Ménarda, K. Turcotte, A. Villeneuve, R. Vallée, C. Lopez, and K. Richardson, J. Non-Cryst. Solids 328, 183 (2003).
[CrossRef]

Nature (2)

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

A. Greer and N. Nathur, Nature 437, 1246 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Semiconductors (1)

H. Fritzsche, Semiconductors 32, 850 (1998).
[CrossRef]

Other (2)

C. Lopez, Ph.D dissertation (University of Central Florida, 2004).

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, to be presented at the Integrated Photonics and Nanophotonics Research and Applications 2008 Meeting, Boston, Mass., July 13-16, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical micrograph of a fabricated resonator device; inset, scanning electron microscopy micrograph shows the coupling region between the coupling (bus) waveguide and the racetrack.

Fig. 2
Fig. 2

Transmission spectra of TM polarization in a resonator device: (a) resonator exhibits an FSR of 2.5 nm and an extinction ratio of 32 dB , (b) resultant spectrum averaged over 64 consecutive scans.

Fig. 3
Fig. 3

(a) Photosensitivity measurement setup, (b) transmission spectra of a resonator in the proximity of its resonant peak. Black squares represent experimental data points, and the filled circles (red online) are data measured in the same device after exposure to an 550 nm wavelength light; the curves are fitted Lorentzian peaks. A wavelength shift of ( 3 ± 0.3 ) pm is determined by a peak fit, corresponding to an index change of ( 4.5 × 10 6 ± 10 % ) RIU in As 2 S 3 at a 1597 nm wavelength.

Fig. 4
Fig. 4

Photoinduced refractive index change as a function of exposure dose ( λ = 550 nm ) in an as-deposited unannealed resonator and in a resonator annealed at 130 ° C for 3 h .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ λ λ × n eff Γ ,
Δ n = Δ n sat × [ 1 exp ( D D 0 ) ] ,

Metrics