Abstract

A microscopy system has been constructed that is capable of simultaneously acquiring both traditional Raman spectra as well as angle-resolved elastic-scattering patterns using a single focused laser spot less than 10μm wide. The elastic-scattering signal was analyzed by generalized Lorenz–Mie theory, representing what we believe to be the first experimental validation of the theory’s prediction of angular backscatter from single spheres. The microscope system exhibits 3nm precision in predicting sphere diameters, while simultaneously yielding high-quality Raman signals. Applications to single cell analysis are envisioned.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
    [CrossRef] [PubMed]
  2. J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
    [CrossRef] [PubMed]
  3. J. Pyhtila and A. Wax, Opt. Express 12, 6178 (2004).
    [CrossRef]
  4. J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
    [CrossRef] [PubMed]
  5. W. Cottrell, J. Wilson, and T. Foster, Opt. Lett. 32, 2348 (2007).
    [CrossRef] [PubMed]
  6. N. Boustany, R. Drezek, and N. Thakor, Biophys. J. 83, 1691 (2002).
    [CrossRef] [PubMed]
  7. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. Dasari, and M. Feld, J. Opt. Soc. Am. A 19, 737 (2002).
    [CrossRef]
  8. H. Fang, L. Qiu, E. Vitkin, M. Zaman, C. Andersson, S. Salahuddin, L. Kimerer, P. Cipolloni, M. Modell, B. Turner, S. Keates, I. Bigio, I. Itzkan, S. Freedman, R. Bansil, E. Hanlon, and L. Perelman, Appl. Opt. 46, 1760 (2007).
    [CrossRef] [PubMed]
  9. G. Grehan, B. Maheu, and G. Gouesbet, Appl. Opt. 25, 3539 (1986).
    [CrossRef] [PubMed]
  10. C. Bohren and D. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).
  11. J. Lock, Appl. Opt. 34, 559 (1995).
    [CrossRef] [PubMed]
  12. P. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).
  13. B. Jasse, R. Chao, and L. Koenig, J. Polym. Sci., Polym. Phys. Ed. 16, 2157 (1978).
    [CrossRef]
  14. C. Xu, P. Carney, and S. Boppart, Opt. Express 13, 5450 (2005).
    [CrossRef] [PubMed]

2007 (2)

2005 (3)

C. Xu, P. Carney, and S. Boppart, Opt. Express 13, 5450 (2005).
[CrossRef] [PubMed]

J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
[CrossRef] [PubMed]

M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (3)

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. Dasari, and M. Feld, J. Opt. Soc. Am. A 19, 737 (2002).
[CrossRef]

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

N. Boustany, R. Drezek, and N. Thakor, Biophys. J. 83, 1691 (2002).
[CrossRef] [PubMed]

1995 (1)

1986 (1)

1983 (1)

C. Bohren and D. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

1978 (1)

B. Jasse, R. Chao, and L. Koenig, J. Polym. Sci., Polym. Phys. Ed. 16, 2157 (1978).
[CrossRef]

1969 (1)

P. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).

Aida, T.

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

Andersson, C.

Backman, V.

Bansil, R.

Bevington, P.

P. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).

Bigelow, C.

J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
[CrossRef] [PubMed]

Bigio, I.

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

Boppart, S.

Boustany, N.

N. Boustany, R. Drezek, and N. Thakor, Biophys. J. 83, 1691 (2002).
[CrossRef] [PubMed]

Calkins, D.

J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
[CrossRef] [PubMed]

Carney, P.

Carpenter, S.

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

Chao, R.

B. Jasse, R. Chao, and L. Koenig, J. Polym. Sci., Polym. Phys. Ed. 16, 2157 (1978).
[CrossRef]

Cipolloni, P.

Cottrell, W.

Dasari, R.

Drezek, R.

N. Boustany, R. Drezek, and N. Thakor, Biophys. J. 83, 1691 (2002).
[CrossRef] [PubMed]

Fang, H.

Feld, M.

Foster, T.

W. Cottrell, J. Wilson, and T. Foster, Opt. Lett. 32, 2348 (2007).
[CrossRef] [PubMed]

J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
[CrossRef] [PubMed]

Freedman, S.

Freyer, J.

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

Gouesbet, G.

Grehan, G.

Guerra, A.

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

Hanlon, E.

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

Itzkan, I.

Jasse, B.

B. Jasse, R. Chao, and L. Koenig, J. Polym. Sci., Polym. Phys. Ed. 16, 2157 (1978).
[CrossRef]

Johnson, T.

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

Kalashnikov, M.

Keates, S.

Kimerer, L.

Koenig, L.

B. Jasse, R. Chao, and L. Koenig, J. Polym. Sci., Polym. Phys. Ed. 16, 2157 (1978).
[CrossRef]

Li, Y.-Q.

M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
[CrossRef] [PubMed]

Lock, J.

Maheu, B.

Mannie, M.

M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
[CrossRef] [PubMed]

McConnell, T.

M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
[CrossRef] [PubMed]

Modell, M.

Mourant, J.

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

Perelman, L.

Pyhtila, J.

Qiu, L.

Salahuddin, S.

Thakor, N.

N. Boustany, R. Drezek, and N. Thakor, Biophys. J. 83, 1691 (2002).
[CrossRef] [PubMed]

Turner, B.

Vitkin, E.

Wax, A.

Wilson, J.

W. Cottrell, J. Wilson, and T. Foster, Opt. Lett. 32, 2348 (2007).
[CrossRef] [PubMed]

J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
[CrossRef] [PubMed]

Xie, C.

M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
[CrossRef] [PubMed]

Xu, C.

Yang, C.

Zaman, M.

Appl. Opt. (3)

Biophys. J. (2)

N. Boustany, R. Drezek, and N. Thakor, Biophys. J. 83, 1691 (2002).
[CrossRef] [PubMed]

J. Wilson, C. Bigelow, D. Calkins, and T. Foster, Biophys. J. 88, 2929 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Mourant, T. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. Freyer, J. Biomed. Opt. 7, 378 (2002).
[CrossRef] [PubMed]

J. Immunol. Methods (1)

M. Mannie, T. McConnell, C. Xie, and Y.-Q. Li, J. Immunol. Methods 297, 53 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Polym. Sci., Polym. Phys. Ed. (1)

B. Jasse, R. Chao, and L. Koenig, J. Polym. Sci., Polym. Phys. Ed. 16, 2157 (1978).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

C. Bohren and D. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

P. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of IRAM system. L, 785 nm laser source; FBS, Fresnel beam sampler; DBS, dichroic beam splitter; HNF, holographic notch filter; NDF, neutral density filter; O and O are the object and image planes, respectively; and F and F are the microscope objective’s Fourier plane and its image. Inset shows water immersion objective in contact with indexed matched teflon, with bead in chamber, suspended in water.

Fig. 2
Fig. 2

(a)–(h) Experimental scattergrams and associated best-fit theoretical models using GLMT from (a),(b) 4.266; (c),(d) 4.190; (e),(f) 2.019; and (g),(h) 5.011 μ m polystyrene beads. Gray scale runs from black low to white high (blue low to red high online). The artifacts in the center of the experimental data are caused by an intense backreflection from the microscope objective. (i) ϕ = 0 ° cut-through of two-dimensional data from scattergram (c) and theoretical fit for 4.190 μ m bead. (j) 1 χ 2 surface showing a strong peak at 4.18 μ m , which was later refined to 4.190 μ m . (k) Raman scattering spectrum from a polystyrene bead gathered simultaneously with elastic scattering data. (l) Mie theory scattergram for a 5.011 μ m bead.

Metrics