Abstract

We theoretically demonstrate what is a new method for efficient launching of in-gap solitons in fiber Bragg gratings. The method is based on generating a soliton outside the grating bandgap. Then, the soliton is adiabatically coupled into the bandgap by using its particlelike behavior. We compare our method to a previously published launching scheme that is based on generating the soliton directly within the grating bandgap. When using low-intensity incident pulses, the transmission efficiency of our method is three times higher than that of the previously published scheme.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).
    [CrossRef]
  2. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
    [CrossRef]
  4. H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
    [CrossRef]
  5. W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
    [CrossRef]
  6. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, J. Opt. Soc. Am. B 19, 1635 (2002).
    [CrossRef]
  7. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
    [CrossRef]
  8. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, Opt. Lett. 30, 2457 (2005).
    [CrossRef] [PubMed]
  9. J. T. Mok, C. M. de Sterke, and B. J. Eggleton, Opt. Express 14, 11987 (2006).
    [CrossRef] [PubMed]
  10. A. Rosenthal and M. Horowitz, Phys. Rev. E 74, 066611 (2006).
    [CrossRef]
  11. N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 58, 7941 (1998).
    [CrossRef]
  12. R. Slusher, B. J. Eggleton, T. Strasser, and C. M. de Sterke, Opt. Express 3, 465 (1998).
    [CrossRef] [PubMed]
  13. A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
    [CrossRef] [PubMed]
  14. C. M. de Sterke, Opt. Express 3, 405 (1998).
    [CrossRef] [PubMed]

2006

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

A. Rosenthal and M. Horowitz, Phys. Rev. E 74, 066611 (2006).
[CrossRef]

A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
[CrossRef] [PubMed]

J. T. Mok, C. M. de Sterke, and B. J. Eggleton, Opt. Express 14, 11987 (2006).
[CrossRef] [PubMed]

2005

2003

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

2002

1999

1998

1996

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

1989

A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

1985

H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
[CrossRef]

Aceves, A. B.

A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

Broderick, N. G. R.

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 58, 7941 (1998).
[CrossRef]

Chu, P. L.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

de Sterke, C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

J. T. Mok, C. M. de Sterke, and B. J. Eggleton, Opt. Express 14, 11987 (2006).
[CrossRef] [PubMed]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
[CrossRef]

C. M. de Sterke, Opt. Express 3, 405 (1998).
[CrossRef] [PubMed]

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 58, 7941 (1998).
[CrossRef]

R. Slusher, B. J. Eggleton, T. Strasser, and C. M. de Sterke, Opt. Express 3, 465 (1998).
[CrossRef] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Eggleton, B. J.

Goodman, R. H.

Horowitz, M.

A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
[CrossRef] [PubMed]

A. Rosenthal and M. Horowitz, Phys. Rev. E 74, 066611 (2006).
[CrossRef]

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, Opt. Lett. 30, 2457 (2005).
[CrossRef] [PubMed]

Mak, W. C. K.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

Malomed, B. A.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

Mok, J. T.

Rosenthal, A.

A. Rosenthal and M. Horowitz, Phys. Rev. E 74, 066611 (2006).
[CrossRef]

A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Slusher, R.

Slusher, R. E.

Strasser, T.

Tsoy, E.

Wabnitz, S.

A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

Weinstein, M. I.

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
[CrossRef]

Appl. Phys. Lett.

H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Phys.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

Phys. Rev. E

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

A. Rosenthal and M. Horowitz, Phys. Rev. E 74, 066611 (2006).
[CrossRef]

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 58, 7941 (1998).
[CrossRef]

Phys. Rev. Lett.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Coupling coefficient of the grating apodization. The inset shows a zoom around the second apodization segment.

Fig. 2
Fig. 2

Formation and propagation of an in-gap soliton obtained using the launching method described in this Letter. The scale in the z axis is logarithmic.

Fig. 3
Fig. 3

Formation and propagation of an in-gap soliton obtained using the launching method described in [9]. The scale in the z axis is logarithmic.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i V g E ± t ± i E ± z + κ ( z ) E + Γ ( E ± 2 + 2 E 2 ) E ± = 0 ,
κ ( z ) = { 0.5 η κ 0 ( cos ( π z ( 2 L 1 ) ) + 1 ) , 0 < z L 1 η κ 0 + ( 1 η ) κ 0 ( z L 1 ) L 2 , L 1 < z L 1 + L 2 ,

Metrics