Abstract

We study the interaction between two Bragg solitons in the vicinity of a defect inside a fiber Bragg grating. A soliton that is trapped in the defect can be released by launching a second soliton. The effect can be used to obtain an all-optical memory that is not strongly sensitive to the phase and the timing arrival of the solitons.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.
  2. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
    [CrossRef]
  3. W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
    [CrossRef]
  4. D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
    [CrossRef]
  5. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, J. Opt. Soc. Am. B 19, 1635 (2002).
    [CrossRef]
  6. W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
    [CrossRef]
  7. I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
    [CrossRef]
  8. C. M. de Sterke, J. Lightwave Technol. 17, 2405 (1999).
    [CrossRef]
  9. Y. P. Shapira and M. Horowitz, Opt. Lett. 32, 1211 (2007).
    [CrossRef] [PubMed]
  10. A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
    [CrossRef] [PubMed]
  11. P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
    [CrossRef]

2007

2006

A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
[CrossRef] [PubMed]

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

2005

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

2003

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

2002

1999

C. M. de Sterke, J. Lightwave Technol. 17, 2405 (1999).
[CrossRef]

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

1994

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Aitchison, J. S.

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

Atai, J.

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

Bayon, J. F.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Bernage, P.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Chu, P. L.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

de Sterke, C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

C. M. de Sterke, J. Lightwave Technol. 17, 2405 (1999).
[CrossRef]

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Delevaque, E.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Douay, M.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Eggleton, B. J.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Goodman, R. H.

Horowitz, M.

Leconte, B.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Mak, W. C. K.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

Malomed, B. A.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

Mel'nikov, I. V.

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Neill, D. R.

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

Niay, P.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Poignant, H.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Poumellec, B.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Ramecourt, D.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Rosenthal, A.

Shapira, Y. P.

Sipe, J. E.

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Slusher, R. E.

Weinstein, M. I.

Xie, W. X.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Appl. Phys. Lett.

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Phys.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Opt. Lett.

Opt. Mater.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Phys. Lett. A

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

Phys. Rev. E

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

Other

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic structure of the grating chirp parameter used to obtain the optical memory.

Fig. 2
Fig. 2

Simulation results showing the intensity I of the waves propagating in the grating in the case when (a) a single soliton is trapped, and in cases when a trapped soliton is released by a control soliton with an initial phase (b) ϕ = 12 π 10 and (c) ϕ = 2 π 10 .

Fig. 3
Fig. 3

Energy of the forward (circles) and the backward (squares) propagating solitons after the trapped soliton was released, as function of the control soliton phase.

Fig. 4
Fig. 4

Local nonlinear Bragg frequency shift, Δ Ω NL ( z ; t ) , in the beginning of the interaction at (a) t = 19.7 ns and (b) t = 20.1 ns , calculated for the cases when the control soliton was launched with an initial phase of ϕ = 12 π 10 (solid curve) and of ϕ = 2 π 10 (dashed curve) and for the case when the control soliton was not launched (dotted curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

± i z u ± + i V g 1 t u ± + κ L ( z ) u + Γ ( u ± 2 + 2 u 2 ) u ± + σ L ( z ) u ± = 0 ,
± i z u ± + i V g 1 t u ± + q ̂ ± ( z ; t ) u + σ ̂ ( z ; t ) u ± = 0 ,

Metrics