Abstract

We study the interaction between two Bragg solitons in the vicinity of a defect inside a fiber Bragg grating. A soliton that is trapped in the defect can be released by launching a second soliton. The effect can be used to obtain an all-optical memory that is not strongly sensitive to the phase and the timing arrival of the solitons.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.
  2. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
    [CrossRef]
  3. W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
    [CrossRef]
  4. D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
    [CrossRef]
  5. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, J. Opt. Soc. Am. B 19, 1635 (2002).
    [CrossRef]
  6. W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
    [CrossRef]
  7. I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
    [CrossRef]
  8. C. M. de Sterke, J. Lightwave Technol. 17, 2405 (1999).
    [CrossRef]
  9. Y. P. Shapira and M. Horowitz, Opt. Lett. 32, 1211 (2007).
    [CrossRef] [PubMed]
  10. A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
    [CrossRef] [PubMed]
  11. P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
    [CrossRef]

2007 (1)

2006 (3)

A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006).
[CrossRef] [PubMed]

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

2005 (1)

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

2003 (2)

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

2002 (1)

1999 (2)

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

C. M. de Sterke, J. Lightwave Technol. 17, 2405 (1999).
[CrossRef]

1994 (1)

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Aitchison, J. S.

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

Atai, J.

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

Bayon, J. F.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Bernage, P.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Chu, P. L.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

de Sterke, C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

C. M. de Sterke, J. Lightwave Technol. 17, 2405 (1999).
[CrossRef]

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Delevaque, E.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Douay, M.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Eggleton, B. J.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Goodman, R. H.

Horowitz, M.

Leconte, B.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Mak, W. C. K.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

Malomed, B. A.

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am. B 20, 725 (2003).
[CrossRef]

Mel'nikov, I. V.

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Neill, D. R.

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

Niay, P.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Poignant, H.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Poumellec, B.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Ramecourt, D.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Rosenthal, A.

Shapira, Y. P.

Sipe, J. E.

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Slusher, R. E.

Weinstein, M. I.

Xie, W. X.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

I. V. Mel'nikov and J. S. Aitchison, Appl. Phys. Lett. 87, 201111 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, Opt. Mater. 11, 115 (1999).
[CrossRef]

Phys. Lett. A (1)

D. R. Neill and J. Atai, Phys. Lett. A 353, 416 (2006).
[CrossRef]

Phys. Rev. E (1)

W. C. K. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).
[CrossRef]

Other (1)

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E.Wolf ed. (Elsevier, 1994), pp. 203-260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic structure of the grating chirp parameter used to obtain the optical memory.

Fig. 2
Fig. 2

Simulation results showing the intensity I of the waves propagating in the grating in the case when (a) a single soliton is trapped, and in cases when a trapped soliton is released by a control soliton with an initial phase (b) ϕ = 12 π 10 and (c) ϕ = 2 π 10 .

Fig. 3
Fig. 3

Energy of the forward (circles) and the backward (squares) propagating solitons after the trapped soliton was released, as function of the control soliton phase.

Fig. 4
Fig. 4

Local nonlinear Bragg frequency shift, Δ Ω NL ( z ; t ) , in the beginning of the interaction at (a) t = 19.7 ns and (b) t = 20.1 ns , calculated for the cases when the control soliton was launched with an initial phase of ϕ = 12 π 10 (solid curve) and of ϕ = 2 π 10 (dashed curve) and for the case when the control soliton was not launched (dotted curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

± i z u ± + i V g 1 t u ± + κ L ( z ) u + Γ ( u ± 2 + 2 u 2 ) u ± + σ L ( z ) u ± = 0 ,
± i z u ± + i V g 1 t u ± + q ̂ ± ( z ; t ) u + σ ̂ ( z ; t ) u ± = 0 ,

Metrics