Abstract

We introduce a method for optical characterization of hollow-core optical waveguides. Radiation pressure exerted by the waveguide modes on dielectric microspheres is used to analyze salient properties such as propagation loss and waveguide mode profiles. These quantities were measured for quasi-single-mode and multimode propagation in on-chip liquid-filled hollow-core antiresonant reflecting optical waveguides. Excellent agreement with analytical and numerical models is found, demonstrating that optically induced particle transport provides a simple, inexpensive, and nondestructive alternative to other characterization methods.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Verdaasdonk and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
    [CrossRef] [PubMed]
  2. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
    [CrossRef]
  3. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
    [CrossRef] [PubMed]
  4. R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
    [CrossRef]
  5. H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
    [CrossRef] [PubMed]
  6. R. G. Hunsperger, Integrated Optics--Theory and Technology, 5th ed. (Springer, 2002).
  7. M. K. Barnoski and S. M. Jensen, Appl. Opt. 15, 2112 (1976).
    [CrossRef] [PubMed]
  8. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, J. Lightwave Technol. 22, 11 (2004).
    [CrossRef]
  9. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  10. K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  11. M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
    [CrossRef]
  12. S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
    [CrossRef]
  13. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Prentice-Hall, 1965).
  14. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
    [CrossRef]
  15. A. R. Hawkins and H. Schmidt, Microfluid. Nanofluid. 4, 17 (2008).
    [CrossRef]
  16. C14H22O(C2H4O)n nonionic surfactant (trace amounts used).

2008 (2)

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, Microfluid. Nanofluid. 4, 17 (2008).
[CrossRef]

2007 (2)

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

2004 (2)

2003 (1)

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

2002 (2)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

R. G. Hunsperger, Integrated Optics--Theory and Technology, 5th ed. (Springer, 2002).

1999 (1)

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

1998 (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
[CrossRef]

1997 (1)

R. M. Verdaasdonk and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef] [PubMed]

1976 (1)

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

1965 (1)

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Prentice-Hall, 1965).

Ashkin, A.

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Barnoski, M. K.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Bernini, R.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

Bjarklev, A.

Block, S.

K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Brenner, H.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Prentice-Hall, 1965).

Broeng, J.

Campopiano, S.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

de Boer, C.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

Erickson, D.

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Florin, E.-L.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
[CrossRef]

Folkenberg, J. R.

Hansen, T. P.

Happel, J.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Prentice-Hall, 1965).

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, Microfluid. Nanofluid. 4, 17 (2008).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Hörber, J. K. H.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics--Theory and Technology, 5th ed. (Springer, 2002).

Jakobsen, C.

Jensen, S. M.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Lewandowski, H. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Mandal, S.

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Nielsen, M. D.

Pastel, R.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Pralle, A.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
[CrossRef]

Renn, M. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Sarro, P. M.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

Schmidt, H.

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, Microfluid. Nanofluid. 4, 17 (2008).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Simonsen, H. R.

Skovgaard, P. M. W.

Stelzer, E. H. K.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

van Swol, C. F. P.

R. M. Verdaasdonk and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef] [PubMed]

Verdaasdonk, R. M.

R. M. Verdaasdonk and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef] [PubMed]

Vienne, G.

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Zeni, L.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

IEEE Sens. J. (1)

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Microfluid. Nanofluid. (2)

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, Microfluid. Nanofluid. 4, 17 (2008).
[CrossRef]

Nat. Photonics (1)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

R. M. Verdaasdonk and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Other (3)

R. G. Hunsperger, Integrated Optics--Theory and Technology, 5th ed. (Springer, 2002).

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Prentice-Hall, 1965).

C14H22O(C2H4O)n nonionic surfactant (trace amounts used).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Hollow-core waveguide device and ARROW cross section along dotted line (inset).

Fig. 2
Fig. 2

Type-M waveguide particle axial trajectory (circles) and fitted curve (curve).

Fig. 3
Fig. 3

(a) Type-M calculated intensity distribution and measured particle trajectory (curve); (b) type-M averaged intensity–potential (circles), particle x histogram (inset), and mode superposition (line); (c) type-S extracted intensity–potential (circles), particle x histogram (inset), and simulated fundamental mode (curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F s ( z ) = Q n c P 0 exp ( α W G z ) ,
F Stokes ( z ) = 6 π η r d z d t = F s ( z ) ,
z ( t ) = 1 α W G ln [ v 0 α W G t + exp ( α W G z 0 ) ] ,
U ( x ) = k T ln p ( x ) = γ c ε I ( x ) = F g ( x ) d x ,

Metrics