Abstract

A Nd:YAG laser crystal was pumped at 946nm and lased at 1064nm. This pump–lase format was investigated in order to reduce the quantum defect between the pump and laser photons as compared to other pump schemes of this material. To the best of our knowledge, this is the first realization of this scheme. A room temperature absorption coefficient and linewidth of 0.075cm1 and 1nm for 1% at. Nd+3 concentrations were measured for the 946nm absorption line. Those parameters impose both narrow-bandwidth pumping and a long absorption path. By increasing the laser crystal temperature above room temperature, the absorption cross sections at 946 and 938nm increase due to enhanced thermal population of the upper energy level of the ground manifold. The possibility of exploiting this phenomenon to enhance the pump absorption is also discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lavi and S. Jackel, Appl. Opt. 39, 3093 (2000).
    [CrossRef]
  2. R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.
  3. C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.
  4. Y. Zheng and H. Kan, Opt. Lett. 30, 2424 (2005).
    [CrossRef] [PubMed]
  5. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
    [CrossRef]
  6. R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
    [CrossRef]
  7. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
    [CrossRef]
  8. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999) p. 105.

2006 (1)

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.

2005 (1)

2001 (2)

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
[CrossRef]

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

2000 (3)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

R. Lavi and S. Jackel, Appl. Opt. 39, 3093 (2000).
[CrossRef]

1999 (1)

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999) p. 105.

Apter, M.

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Filipkowski, M. E.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Goldring, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

Goodno, G. D.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
[CrossRef]

Hach, E. E.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.

Harkenrider, J.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
[CrossRef]

Huegel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Injeyan, H.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
[CrossRef]

Jackel, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

R. Lavi and S. Jackel, Appl. Opt. 39, 3093 (2000).
[CrossRef]

Kan, H.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999) p. 105.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Lavi, R.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

R. Lavi and S. Jackel, Appl. Opt. 39, 3093 (2000).
[CrossRef]

Lebiush, E.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

Paiss, I.

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

Palese, S.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
[CrossRef]

Parra, E.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Stickley, C. M.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.

Tal, A.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

Tzuk, Y.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

Zheng, Y.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Huegel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Opt. Commun. (1)

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, Opt. Commun. 195, 427 (2001).
[CrossRef]

Opt. Lett. (2)

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, Opt. Lett. 21, 1672 (2001).
[CrossRef]

Y. Zheng and H. Kan, Opt. Lett. 30, 2424 (2005).
[CrossRef] [PubMed]

Other (3)

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999) p. 105.

R. Lavi, Y. Tzuk, S. Jackel, E. Lebiush, I. Paiss, and M. Apter, in Conference on Lasers and Electro-Optics Europe--Technical Digest, (2000), p. 51.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, in Advanced Solid-State Photonics Conference (Optical Society of America, 2006), paper TuA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup of the Nd:YAG resonator.

Fig. 2
Fig. 2

Nd:YAG absorption characteristics of the F 3 2 4 I 9 2 4 transition in the vicinity of 940 nm , as a function of ambient temperature.

Fig. 3
Fig. 3

Dependence of the peak absorption coefficient on ambient temperature.

Fig. 4
Fig. 4

Dependence of the absorption linewidth on ambient temperature.

Fig. 5
Fig. 5

Output power at 1064 nm as a function of absorbed power at 946 nm for different output couplers.

Fig. 6
Fig. 6

Findlay–Clay analysis results obtained for laser cavity operating at various temperatures.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 938 [ 1 cm ] = 0.06 + 6.31 × 10 4 × T [ ° C ] ,
α 946 [ 1 cm ] = 0.06 + 6.46 × 10 4 × T [ ° C ] ,
Δ ν [ nm ] 0.7 + 24.7 × 10 4 × T [ ° C ] .
α ( T K ) = σ abs ( T K ) N ( T K ) exp ( E p k T K ) i exp ( E i k T K ) Δ ν ,

Metrics