Abstract

Nonlinear interaction of two femtosecond laser pulses in a filament, induced by one of them inside a fused silica plate, leads to generation of the new spectral components. These spectral components reach hundreds of nanometers bandwidth. Their spatial and spectral properties can be explained by four-wave parametric coupling in the filament. The energy measurements indicate the high efficiency of this process.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637 (1999).
    [CrossRef]
  2. A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
    [CrossRef]
  3. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
    [CrossRef] [PubMed]
  4. G. G. Luther, A. C. Newell, and J. V. Moloney, Opt. Lett. 19, 789 (1994).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
    [CrossRef] [PubMed]
  6. Q. Xing, K. M. Yoo, and R. R. Alfano, Appl. Opt. 32, 2087 (1993).
    [CrossRef] [PubMed]
  7. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
    [CrossRef] [PubMed]
  8. F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
    [CrossRef] [PubMed]
  9. K. Shimoda, Jpn. J. Appl. Phys. 5, 86 (1966).
    [CrossRef]

2006 (2)

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

2002 (1)

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

J. K. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

1966 (1)

K. Shimoda, Jpn. J. Appl. Phys. 5, 86 (1966).
[CrossRef]

Akozbek, N.

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

Alfano, R. R.

Becker, A.

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

Bergé, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Bowden, C. M.

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

Brodeur, A.

Chin, S. L.

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637 (1999).
[CrossRef]

Couairon, A.

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Dubietis, A.

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

Faccio, D.

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

Franco, M.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Gaeta, A. L.

J. K. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
[CrossRef] [PubMed]

Gaizauskas, E.

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

Iwasaki, A.

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

Liu, W.

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Luther, G. G.

Moloney, J. V.

Mysyrowicz, A.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Newell, A. C.

Prade, B.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Ranka, J. K.

J. K. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
[CrossRef] [PubMed]

Scalora, M.

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

Schrimer, R. W.

J. K. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
[CrossRef] [PubMed]

Shimoda, K.

K. Shimoda, Jpn. J. Appl. Phys. 5, 86 (1966).
[CrossRef]

Sudrie, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Theberge, F.

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Trapani, P. D.

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

Tzortzakis, S.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Xing, Q.

Yoo, K. M.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Shimoda, Jpn. J. Appl. Phys. 5, 86 (1966).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. D. Trapani, Phys. Rev. E 73, 016608 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

J. K. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
[CrossRef] [PubMed]

N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Phys. Rev. Lett. 89, 143901 (2002).
[CrossRef] [PubMed]

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photocamera image of the spatial distribution of laser radiation on the screen placed behind the target for zero (right panel) and 300 fs (left panel) pump–probe delay times.

Fig. 2
Fig. 2

CS spectra (opened and closed triangles) and SR spectra (dashed and solid curves) for different angles α. A red boundary cutoff of the SR spectra is determined by a reflection from a mirror, which is placed before a spectrometer and reflects radiation within the bandwidth between 750 and 850 nm . Actually the spectra of SR extend to fundamental wavelength. SR spectra were obtained by collecting the SR radiation over angular distribution.

Fig. 3
Fig. 3

Experimental dependence (open circles) of the CS central wavelength on the angle α. Theoretical curve (closed circles) is calculated according to the requirement of momentum conservation (see inset).

Fig. 4
Fig. 4

Wavelength dependence of internal angle θ of emission of CE and SR radiation from a filament at φ = 0 . Theoretical (dashed curve) and experimental (closed circles) angular distributions of SR radiation. The same for the angular distributions of CE ( α = 0 ) , which are denoted by a solid curve and open circles, respectively. Probe pulse propagates at θ = 0.105 , φ = 0 rad .

Fig. 5
Fig. 5

(a) Experimental and (b) theoretical far-field angular distribution of radiation at 573 nm . The bright spot in theoretical plot denotes the position of the probe beam. In all cases the probe radiation is directed at θ = 0.105 , φ = 0 rad with respect to the filament axis, which is at θ = 0 , φ = 0 rad . The theoretical plot is obtained for L = 3 mm , d = 5 μ m .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E SR ( k SR x k SR y k SR z ) P SR ( x , y , z ) exp ( i Δ ϕ ) d x d y d z ,
I SR ( θ , ϕ ) exp { 2 [ ( d 4 Δ k ) 2 + ( L 4 Δ k z ) 2 ] } .

Metrics