Abstract

We demonstrate low-threshold supercontinuum generated in a highly nonlinear arsenic selenide chalcogenide nanowire with tailored dispersion. The tapered submicrometer chalcogenide fiber exhibits an ultrahigh nonlinearity, n21.1×1017m2W and an effective mode area of 0.48μm2, yielding an effective nonlinearity of γ93.4Wm, which is over 80,000 times larger than standard silica single-mode fiber at a wavelength of 1550nm. This high nonlinearity, in conjunction with the engineered anomalous dispersion, enables low-threshold soliton fission leading to large spectral broadening at a dramatically reduced peak power of several watts, corresponding to picojoule energy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription