Abstract

The effect of the multiplication of two vector electric fields by random Jones matrices on their coherence properties is investigated by analyzing their interference fringes. It is shown that these random modulations cannot increase the maximal visibility obtained when the polarization states of the two analyzed electric fields are optimized. This new result generalizes a standard property of perfectly polarized light to partially polarized light and is representative of the irreversible effects of random modulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  3. M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004).
    [CrossRef]
  4. Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  5. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 32, 588 (2007).
    [CrossRef] [PubMed]
  6. A. Luis, J. Opt. Soc. Am. A 24, 1063 (2007).
    [CrossRef]
  7. R. Martinez-Herrero and P. M. Mejias, Opt. Lett. 32, 1471 (2007).
    [CrossRef] [PubMed]
  8. T. Shirai and E. Wolf, J. Opt. Soc. Am. A 21, 1907 (2004).
    [CrossRef]
  9. Ph. Réfrégier, J. Math. Phys. 48, 033303.1 (2007).

2007 (4)

2005 (1)

2004 (2)

2003 (2)

Borghi, R.

Dogariu, A.

Friberg, A. T.

Gori, F.

Goudail, F.

Luis, A.

Martinez-Herrero, R.

Mejias, P. M.

Mujat, M.

Réfrégier, Ph.

Ph. Réfrégier, J. Math. Phys. 48, 033303.1 (2007).

Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
[CrossRef] [PubMed]

Santarsiero, M.

Setälä, T.

Shirai, T.

Tervo, J.

Wolf, E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ EE ( r 1 , r 2 , τ ) = E ( r 2 , t + τ ) E * ( r 1 , t ) E ( r 1 , t ) 2 E ( r 2 , t ) 2 ,
J ( r 1 , t ) = J ( r 2 , t ) = ( cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ) ,
Ω EE ( r 1 , r 2 , τ ) = ( I 1 μ 1 ( τ ) 0 0 I 2 μ 2 ( τ ) ) ,
Ω AA ( r 1 , r 2 , τ ) = I 2 f ( σ 2 ) ( A μ 1 ( τ ) + μ 2 ( τ ) t h ( σ 2 ) 0 0 A μ 1 ( τ ) t h ( σ 2 ) + μ 2 ( τ ) ) ,
M AA ( r 1 , r 2 , τ ) = ( α c ( τ ) 0 0 β c ( τ ) ) ,
α c ( τ ) = A μ 1 ( τ ) + μ 2 ( τ ) t h ( σ 2 ) A + t h ( σ 2 ) ,
β c ( τ ) = A μ 1 ( τ ) t h ( σ 2 ) + μ 2 ( τ ) A t h ( σ 2 ) + 1 .

Metrics