Abstract

We apply the polar decomposition of the Mueller matrix describing a liquid-crystal-on-silicon display to identify the diattenuator, depolarizer, and retarder contributions as a function of the gray level. The retarder contribution is expressed in terms of the equivalent Jones matrix to apply previous techniques to evaluate the phase modulation. This allows searching for optimized polarization configurations for phase- or amplitude-only modulation responses. We present results for λ=633nm showing a phase-only modulation up to 2πrad and flat intensity modulation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, Appl. Opt. 43, 6278 (2004).
    [CrossRef] [PubMed]
  2. J. Nicolás, J. Campos, and M. J. Yzuel, J. Opt. Soc. Am. A 19, 1013 (2002).
    [CrossRef]
  3. J. Kacperski and M. Kujawinska, Opt. Express 14, 9664 (2006).
    [CrossRef] [PubMed]
  4. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, Opt. Eng. (Bellingham) 40, 2558 (2001).
    [CrossRef]
  5. I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, J. Appl. Phys. 94, 3697 (2003).
    [CrossRef]
  6. J. L. Pezzaniti, S. C. McClain, R. A. Chipman, and S.-Y. Lu, Opt. Lett. 18, 2071 (1993).
    [CrossRef] [PubMed]
  7. J. E. Wolfe and R. A. Chipman, Appl. Opt. 45, 1688 (2006).
    [CrossRef] [PubMed]
  8. A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, Opt. Express 16, 1669 (2008).
    [CrossRef] [PubMed]
  9. J. L. Pezzanitti and R. A. Chipman, Opt. Lett. 18, 1567 (1993).
    [CrossRef]
  10. V. Durán, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, J. Appl. Phys. 99, 113101 (2006).
    [CrossRef]
  11. J. A. Davis, J. Nicolás, and A. Márquez, Appl. Opt. 41, 4579 (2002).
    [CrossRef] [PubMed]
  12. D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
    [CrossRef]
  13. A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. 3, 08011 (2008).
    [CrossRef]

2008 (2)

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. 3, 08011 (2008).
[CrossRef]

A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, Opt. Express 16, 1669 (2008).
[CrossRef] [PubMed]

2006 (3)

2004 (1)

2003 (1)

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, J. Appl. Phys. 94, 3697 (2003).
[CrossRef]

2002 (2)

2001 (1)

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, Opt. Eng. (Bellingham) 40, 2558 (2001).
[CrossRef]

1993 (2)

Appl. Opt. (3)

J. Appl. Phys. (2)

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, J. Appl. Phys. 94, 3697 (2003).
[CrossRef]

V. Durán, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, J. Appl. Phys. 99, 113101 (2006).
[CrossRef]

J. Eur. Opt. Soc. (1)

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. 3, 08011 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (Bellingham) (1)

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, Opt. Eng. (Bellingham) 40, 2558 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Modulation in the configuration for phase calibration. (a) DoP and intensity modulation. Curves indicate predictions and circles indicate experimental results. (b) Phase modulation terms δ, δ M , and β.

Fig. 2
Fig. 2

DoP, intensity, and phase modulation in the configuration for phase-only response. Curves indicate predictions, and points indicate experimental data.

Fig. 3
Fig. 3

DoP, intensity, and phase modulation in the configuration for amplitude-only response. Curves indicate predictions, and points indicate experimental data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M = ( 1 0 T P Δ m Δ ) ( 1 0 T 0 m R ) = ( 1 0 T P Δ m Δ m R ) .
J R = e i β ( A B B * A * ) .
M R = ( 1 0 0 0 0 A 2 B 2 2 ( A Re B Re A Im B Im ) 2 ( A Im B Re A Re B Im ) 0 2 ( A Re B Re A Im B Im ) A Re 2 A Im 2 + B Re 2 B Im 2 2 A Re A Im + 2 B Re B Im 0 2 ( A Re B Im + A Im B Re ) 2 A R A I 2 B R B I A Re 2 A Im 2 B Re 2 + B Im 2 ) .
δ M = arctan ( A Im cos ( φ 1 + φ 2 ) + B Im sin ( φ 1 + φ 2 ) A Re cos ( φ 1 φ 2 ) + B Re sin ( φ 1 φ 2 ) ) .

Metrics