Abstract

A distributed feedback fiber laser made of highly Er-Yb codoped phosphate glass fiber has been demonstrated experimentally. Efficient pump absorption allows for multimode pumping into the cladding of the active fiber. Output powers up to 160mW have been achieved. The 35mm long fiber laser device emits with >50dB side mode suppression ratio.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. A. Ball and W. W. Morey, Opt. Lett. 17, 420 (1992).
    [CrossRef] [PubMed]
  2. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, Electron. Lett. 28, 1385 (1992).
    [CrossRef]
  3. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. 11, 269 (1999).
    [CrossRef]
  4. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, Opt. Lett. 22, 694 (1997).
    [CrossRef] [PubMed]
  5. W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, J. Lightwave Technol. 16, 114 (1998).
    [CrossRef]
  6. Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
    [CrossRef]
  7. T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 30, 2748 (2005).
    [CrossRef] [PubMed]
  8. A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, Opt. Express 14, 7087 (2006).
    [CrossRef] [PubMed]
  9. S. Taccheo, G. Della Valle, K. Ennser, G. Sorbello, and S. Jiang, Electron. Lett. 42, 594 (2006).
    [CrossRef]
  10. J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, Appl. Phys. Lett. 89, 101127 (2006).
    [CrossRef]
  11. R. Matei Rogojan, A. Schülzgen, N. Peyghambarian, A. Laronche, and J. Albert, Bragg Gratings, Photosensitivity and Poling in Glass Waveguide, Technical Digest Series (Optical Society of America, 2007), paper BTuC3.
  12. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).
  13. F. Sanchez, P. Le Boudec, and G. Stephan, Phys. Rev. A 48, 2220 (1993).
    [CrossRef] [PubMed]

2006

S. Taccheo, G. Della Valle, K. Ennser, G. Sorbello, and S. Jiang, Electron. Lett. 42, 594 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, Opt. Express 14, 7087 (2006).
[CrossRef] [PubMed]

2005

2004

1999

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. 11, 269 (1999).
[CrossRef]

1998

1997

1993

F. Sanchez, P. Le Boudec, and G. Stephan, Phys. Rev. A 48, 2220 (1993).
[CrossRef] [PubMed]

1992

G. A. Ball and W. W. Morey, Opt. Lett. 17, 420 (1992).
[CrossRef] [PubMed]

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, Electron. Lett. 28, 1385 (1992).
[CrossRef]

Appl. Phys. Lett.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Electron. Lett.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, Electron. Lett. 28, 1385 (1992).
[CrossRef]

S. Taccheo, G. Della Valle, K. Ennser, G. Sorbello, and S. Jiang, Electron. Lett. 42, 594 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Opt. Mater.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. 11, 269 (1999).
[CrossRef]

Phys. Rev. A

F. Sanchez, P. Le Boudec, and G. Stephan, Phys. Rev. A 48, 2220 (1993).
[CrossRef] [PubMed]

Other

R. Matei Rogojan, A. Schülzgen, N. Peyghambarian, A. Laronche, and J. Albert, Bragg Gratings, Photosensitivity and Poling in Glass Waveguide, Technical Digest Series (Optical Society of America, 2007), paper BTuC3.

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the fiber chain including the 3.5 cm long DFB grating section inside the rare-earth-doped, single-mode core, and the multimode delivery fiber used to launch 976 nm pump light into the cladding of the active fiber.

Fig. 2
Fig. 2

Signal power ( 1535 nm ) of the cladding-pumped DFB fiber laser as a function of multimode pump power ( 976 nm ) launched into the cladding of the active fiber.

Fig. 3
Fig. 3

Emission spectrum of the cladding-pumped DFB fiber laser measured by an optical spectrum analyzer with 0.01 nm resolution. The real emission linewidth of the order of tens of kilohertz has been obtained by self-delayed homodyne measurements.

Fig. 4
Fig. 4

Wide-range temperature tuning of the DFB fiber laser emission wavelength. Normalized emission spectra at selected temperatures are shown in the inset. To pump the temperature controlled DFB fiber laser 4 W of multimode light has been launched.

Metrics